Relativistic chaos is coordinate invariant.

نویسنده

  • Adilson E Motter
چکیده

The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of Lyapunov exponents under general space-time transformations and we find that chaos, as characterized by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion regarding the noninvariance of chaos in cosmology, a major claim about chaos in general relativity, necessarily involves the violation of hypotheses required for a proper definition of the Lyapunov exponents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Lyapunov Exponents in General Relativity

Lyapunov exponents (LEs) are key indicators of chaos in dynamical systems. In general relativity the classical definition of LE meets difficulty because it is not coordinate invariant and spacetime coordinates lose their physical meaning as in Newtonian dynamics. We propose a new definition of relativistic LE and give its algorithm in any coordinate system, which represents the observed changin...

متن کامل

Coordinate finite type invariant surfaces in Sol spaces

In the present paper, we study surfaces invariant under the 1-parameter subgroup in Sol space $rm Sol_3$. Also, we characterize the surfaces in $rm Sol_3$ whose coordinate functions of an immersion of the surface are eigenfunctions of the Laplacian $Delta$ of the surface.

متن کامل

. ge n - ph ] 3 O ct 2 01 6 Non - relativistic model of the laws of gravity and electromagnetism , invariant under the change of inertial and non - inertial coordinate systems .

Under the classical non-relativistic consideration of the space-time we propose the model of the laws of gravity and Electrodynamics, invariant under the galilean transformations and moreover, under every change of non-inertial cartesian coordinate system. Being in the frames of non-relativistic model of the space-time, we adopt some general ideas of the General Theory of Relativity, like the a...

متن کامل

Fractals and Symbolic Dynamics as Invariant Descriptors of Chaos in General Relativity

The study of dynamics in general relativity has been hampered by a lack of coordinate independent measures of chaos. Here I review a variety of invariant measures for quantifying chaotic dynamics in relativity that exploit the coordinate independence of fractal dimensions and symbolic entropies. 1 Time and chaos Historically, chaos theory was developed for Newtonian dynamics where time and spac...

متن کامل

“ Gauge ” in General Relativity : — Second - order general relativistic gauge - invariant perturbation theory —

As in the case of the other gauge field theories, there is so called “gauge” also in general relativity. This “gauge” is unphysical degree of freedom. There are two kinds of “gauges” in general relativity. These are called the firstand the second-kind of gauges, respectively. The gauge of the first kind is just coordinate system on a single manifold. On the other hand, the gauge of the second k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 91 23  شماره 

صفحات  -

تاریخ انتشار 2003