Mitochondrial reactive oxygen species: which ROS signals cardioprotection?

نویسندگان

  • Anders O Garlid
  • Martin Jaburek
  • Jeremy P Jacobs
  • Keith D Garlid
چکیده

Mitochondria are the major effectors of cardioprotection by procedures that open the mitochondrial ATP-sensitive potassium channel (mitoKATP), including ischemic and pharmacological preconditioning. MitoKATP opening leads to increased reactive oxygen species (ROS), which then activate a mitoKATP-associated PKCε, which phosphorylates mitoKATP and leaves it in a persistent open state (Costa AD, Garlid KD. Am J Physiol Heart Circ Physiol 295, H874-H882, 2008). The ROS responsible for this effect is not known. The present study focuses on superoxide (O2(·-)), hydrogen peroxide (H2O2), and hydroxyl radical (HO(·)), each of which has been proposed as the signaling ROS. Feedback activation of mitoKATP provides an ideal setting for studying endogenous ROS signaling. Respiring rat heart mitochondria were preincubated with ATP and diazoxide, together with an agent being tested for interference with this process, either by scavenging ROS or by blocking ROS transformations. The mitochondria were then assayed to determine whether or not the persistent phosphorylated open state was achieved. Dimethylsulfoxide (DMSO), dimethylformamide (DMF), deferoxamine, Trolox, and bromoenol lactone each interfered with formation of the ROS-dependent open state. Catalase did not interfere with this step. We also found that DMF blocked cardioprotection by both ischemic preconditioning and diazoxide. The lack of a catalase effect and the inhibitory effects of agents acting downstream of HO(·) excludes H2O2 as the endogenous signaling ROS. Taken together, the results support the conclusion that the ROS message is carried by a downstream product of HO(·) and that it is probably a product of phospholipid oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALL FOR PAPERS Mitochondria in Cardiovascular Physiology and Disease Mitochondrial reactive oxygen species: which ROS signals cardioprotection?

Garlid AO, Jaburek M, Jacobs JP, Garlid KD. Mitochondrial reactive oxygen species: which ROS signals cardioprotection? Am J Physiol Heart Circ Physiol 305: H960–H968, 2013. First published August 2, 2013; doi:10.1152/ajpheart.00858.2012.—Mitochondria are the major effectors of cardioprotection by procedures that open the mitochondrial ATP-sensitive potassium channel (mitoKATP), including ischem...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

1 2 Mitochondrial Reactive Oxygen Species — Which ROS Signals Cardioprotection ? 3 4

30 Mitochondria are the major effectors of cardioprotection by procedures that open the 31 mitochondrial ATP-sensitive potassium channel (mitoKATP), including ischemic and 32 pharmacological preconditioning. MitoKATP opening leads to increased reactive oxygen 33 species (ROS), which then activate a mitoKATP-associated PKCε, which phosphorylates 34 mitoKATP and leaves it in a persistent open sta...

متن کامل

A common mechanism links differently acting complex II inhibitors to cardioprotection: modulation of mitochondrial reactive oxygen species production.

In this study, we have analyzed the effect of different cardioprotective complex II inhibitors on the mitochondrial production of reactive oxygen species (ROS) because ROS seem to be essential for signaling during preconditioning to prevent ischemia/reperfusion injury. Despite different binding sites and concentrations required for half-maximal inhibition-ranging from nanomolar for the Q site i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 305 7  شماره 

صفحات  -

تاریخ انتشار 2013