Influence of Coincidence Site Lattice Boundary on Creep Resistance of P91 Steel Weldments
نویسندگان
چکیده
The grain boundary structure is usually described by the coincidence site lattice (CSL) model based on the misorientation of adjoining crystals. Therefore, the objective of the present investigation is to seek the correlation between CSL fraction and creep resistance of modified 9Cr–1Mo steel (P91) with and without boron addition. Results showed that CSL fraction increases with increase in heat treatment temperature and this increase is more prominent in boron containing modified 9Cr–1Mo steel. Creep test results show the increase in creep rupture life with increase in CSL fraction for both the base metals; but this increase is more in boron containing steel than the boron free steel. This improvement is attributed to the stability of CSL boundaries in the material. In spite of the increase in CSL boundaries with normalizing heat treatment temperature, boron free material shows less creep rupture life in its weldment than the boron containing steel weldment. © 2014 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the Indira Gandhi Centre for Atomic Research.
منابع مشابه
University of Huddersfield Repository Analyzing the Characteristics of the Cavity Nucleation, Growth and Coalescence Mechanism of 9cr-1mo-vnb Steel (p91) Steel
Creep damage is one of the serious problems for the high temperature industries and computational approach (such as continuum damage mechanics) has been developed and used, complementary to the experimental approach, to assist safe operation. However, there are no ready creep damage constitutive equations to be used for predicting the lifetime for this type of alloy, particularly for low stress...
متن کاملThe development of advanced creep constitutive equations for high chromium steel P91at low stress range
Diffusion dominates the creep deformation at low stress range for high chromium steel P91. Brittle creep fracture is caused by cavity nucleation, growth and coalescence of cavities and large precipitates (Laves phase and M23C6) at grain boundary under low stress range. At low stress range, a linear relation between strain at failure and different stresses has been described. Moreover, the minim...
متن کاملMeasurement of Creep Deformation across Welds in 316H Stainless Steel Using Digital Image Correlation
Spatially resolved measurement of creep deformation across weldments at high temperature cannot be achieved using standard extensometry approaches. In this investigation, a Digital Image Correlation (DIC) based system has been developed for long-term high-temperature creep strain measurement in order to characterise the material deformation behaviour of separate regions of a multi-pass weld. Th...
متن کاملNEW METHOD FOR LIFE ASSESSMENT OF 1%CR-0.5% MO LOW ALLOY STEEL ON THE BASE OF GRAIN BOUNDARY CREEP CAVITATIONS
Life assessment on the base of grain boundary creep cavitation of 1%Cr - 0.5%Mo low alloy steel has been discussed in this paper. Since microstructural degradation is one of the most important mechanisms that affects creep life, it is necessary to assess microstructural damage in order to estimate the life. Microstructural damage within the grain boundaries is a continuous phenomena starting fr...
متن کاملAnalyzing the characteristics of the cavity nucleation, growth and coalescence mechanism of 9Cr-1Mo-VNb steel (P91) steel
Creep damage is one of the serious problems for the high temperature industries and computational approach (such as continuum damage mechanics) has been developed and used, complementary to the experimental approach, to assist safe operation. However, there are no ready creep damage constitutive equations to be used for predicting the lifetime for this type of alloy, particularly for low stress...
متن کامل