Ultra-low percolation threshold in ferrite-metal cofired ceramics brings both high permeability and high permittivity
نویسندگان
چکیده
High permeability and high permittivity are hard to be achieved simultaneously, either in single-phased materials or in composite materials, such as ferrite-ferroelectric ceramic composites and ferrite-metal percolative composites. In this work, ultra-low percolation threshold is achieved in NiZnCu ferrite-Ag cofired ceramics, which endows the composite with both high permeability and high permittivity by minimizing the negative effect of nonmagnetic conductive fillers on magnetic properties. The percolation threshold is controlled by the temperature matching between ferrite densification and Ag melting. A thin and long percolative net forms between large ferrite grains under a proper cofiring process, which brings a low percolation threshold of 1.21vol%, more than one order of magnitude lower than the theoretical value of 16vol%. Near the ultra-low threshold, the composite exhibits a high permeability of 585 and a high permittivity of 78.
منابع مشابه
Electrodynamics of metal-dielectric composites and electromagnetic crystals
A theory that takes into account effects of retardation is developed for calculating the effective dielectric constant and magnetic permeability of metal-dielectric composites and photonic crystals containing a metallic component. The effective parameters depend, in general, on the local microgeometry of composites and electromagnetic crystals. For example, in metal-wire crystals the effective ...
متن کاملElectrical properties of UHMWPE/graphite nanoplates composites obtained by in-situ polymerization method
There are described nanocomposites based on ultra high molecular weight polyethylene and graphite nanoplates prepared by in-situ polymerization method. It is carried out a comprehensive study of electric properties of these composites, including direct current (dc) and alternating current (ac) properties. There is explored dependence of the conductivity and dielectric permeability on filler con...
متن کاملMicrowave Dielectric Properties of Ni0.2CuxZn0.8–xFe2O4 for Application in Antenna
Structural, vibrational and microwave dielectric properties of Nickel-Copper-Zinc ferrite (Ni0.2CuxZn0.8−xFe2O4) ceramics have been presented in this paper. Samples have been prepared using conventional auto-combustion method. The X-ray diffraction (XRD) results confirmed the ferrite samples to be of cubic spinel structure, which further was validated by Fourier transform infrared (FT-IR) and R...
متن کاملNovel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal
A novel NaAgMoO4 material with spinel-like structure was synthesized by using the solid state reaction method and the ceramic sample was well densified at an extreme low sintering temperature about 400°C. Rietveld refinement of the crystal structure was performed using FULLPROF program and the cell parameters are a = b = c = 9.22039 Å with a space group F D -3 M (227). High performance microwav...
متن کاملElectrical permittivity and conductivity of carbon black-polyvinyl chloride composites
Electrical conductivity and permittivity of carbon black-polyvinyl chloride composites were studied over a wide frequency spectrum (dc, 1.3 GHz). Conductivity of the bulk composites increases with higher volume fraction of carbon black as expected. However, the functional dependence of the increasing conductivity with carbon black loading is different below and above the percolation threshold b...
متن کامل