Multiple FLC haplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana.
نویسندگان
چکیده
Relating molecular variation to phenotypic diversity is a central goal in evolutionary biology. In Arabidopsis thaliana, FLOWERING LOCUS C (FLC) is a major determinant of variation in vernalization--the acceleration of flowering by prolonged cold. Here, through analysis of 1307 A. thaliana accessions, we identify five predominant FLC haplotypes defined by noncoding sequence variation. Genetic and transgenic experiments show that they are functionally distinct, varying in FLC expression level and rate of epigenetic silencing. Allelic heterogeneity at this single locus accounts for a large proportion of natural variation in vernalization that contributes to adaptation of A. thaliana.
منابع مشابه
Divergence of annual and perennial species in the Brassicaceae and the contribution of cis‐acting variation at FLC orthologues
Variation in life history contributes to reproductive success in different environments. Divergence of annual and perennial angiosperm species is an extreme example that has occurred frequently. Perennials survive for several years and restrict the duration of reproduction by cycling between vegetative growth and flowering, whereas annuals live for 1 year and flower once. We used the tribe Arab...
متن کاملRole of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis.
Arabidopsis (Arabidopsis thaliana) accessions provide an excellent resource to dissect the molecular basis of adaptation. We have selected 192 Arabidopsis accessions collected to represent worldwide and local variation and analyzed two adaptively important traits, flowering time and vernalization response. There was huge variation in the flowering habit of the different accessions, with no simp...
متن کاملEpistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait.
Epistatic gene interactions are believed to be a major factor in the genetic architecture of evolutionary diversification. In Arabidopsis thaliana, the FRI and FLC genes mechanistically interact to control flowering time, and here we show that this epistatic interaction also contributes to a latitudinal cline in this life history trait within the species. Two major FLC haplogroups (FLC(A) and F...
متن کاملVariation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS
The onset of flowering, the change from vegetative to reproductive development, is a major life history transition in flowering plants. Recent work suggests that mutations in cis-regulatory mutations should play critical roles in the evolution of this (as well as other) important adaptive traits, but thus far there has been little evidence that directly links regulatory mutations to evolutionar...
متن کاملAllele-specific assay reveals functional variation in the chalcone synthase promoter of Arabidopsis thaliana that is compatible with neutral evolution.
Promoters are thought to play a major role in adaptive evolution, yet little is known about the regulatory diversity within species, where microevolutionary processes take place. To investigate the potential for evolutionary change in the promoter of a gene, we examined nucleotide and functional variation of the Chalcone Synthase (CHS) cis-regulatory region in Arabidopsis thaliana. CHS is the b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 28 15 شماره
صفحات -
تاریخ انتشار 2014