Low Power Design of Digital Systems Using Energy Recovery Clocking and Clock Gating

نویسندگان

  • Hamid Mahmoodi
  • Ying Chen
  • Vishwanadh Tirumalashetty
چکیده

Energy recovery clocking has been demonstrated as an effective method for reducing the clock power. However, in this method the conventional square wave clock signal is replaced by a sinusoidal clock generated by a resonant circuit. Such a modification in clock signal prevents application of existing clock gating solutions. In this paper, we propose clock gating solutions for energy recovery clocking by gating the flip-flops or the clock generator. According to simulations results in 0.25um CMOS technology, applying our clock gating to the energy recovery clocked flip-flops reduces their power by 1000X in the idle mode with negligible power and delay overhead in the active mode. Applying the proposed clock gating technique to a system of 1000 flip-flops with idle mode probability and data switching activity of 50%, reduces the total power by 47%. We also propose negative edge triggering solution for the energy recovery clocked flip-flops. I certify that the Abstract is a correct representation of the content of this thesis. _________________________ _____________ Chair, Thesis Committee Date v ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Hamid Mahmoodi for his invaluable advice and support towards the completion of my thesis. I would like to thank my engineering department for providing me the resources required for completing my project. I would like to thank Dr. Ying Chen for her timely feedbacks. I would like to thank my family and friends for their support.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power reduction on clock-tree using Energy recovery and clock gating technique

Power consumption of the clock tree dominates over 40% of the total power in modern high performance VLSI designs, measures must be taken to keep it under control. Hence, low power clocking schemes are promising approaches for low-power design. We propose four novel energy recovery clocked flip-flops that enable energy recovery from the clock network, resulting in significant energy savings. Th...

متن کامل

Design of an Ultra Low Power Clock Gating D Flip-Flop Using Quasi-Static Energy Recovery Logic

This paper presents low power clock gating adiabatic D flip-flop using single phase sinusoidal power clock scheme. We propose the clock gated single phase Quasi-Static Energy Recovery Logic (QSERL) D flip-flop at 90nm CMOS technology. In the previously proposed QSERL logic, two phase sinusoidal power clocks were used that increased the hardware complexity and clocking issues. In this paper, sin...

متن کامل

A Noble Design of Energy Recovery Flip-Flops

The power consumption of the clock tree dominates over 40% of the total power in high performance VLSI designs. Hence, low power clocking schemes are promising approaches for low power design. We propose energy recovery clocked flip-flops that enable energy recovery from the clock network, resulting in significant energy savings. These flip-flops operate with a single-phase sinusoidal clock whi...

متن کامل

Low Power Vlsi Design of a Fir

Digital signal processing is an area of science and engineering that has developed rapidly over the past 30 years. This rapid development is a result of the significant advances in digital computer technology and integrated–circuit fabrication. DSP processors are a diverse group, most share some common features designed to support fast execution of the repetitive, numerically intensive computat...

متن کامل

Design and Implementation of Field Programmable Gate Array Based Baseband Processor for Passive Radio Frequency Identification Tag (TECHNICAL NOTE)

In this paper, an Ultra High Frequency (UHF) base band processor for a passive tag is presented. It proposes a Radio Frequency Identification (RFID) tag digital base band architecture which is compatible with the EPC C C2/ISO18000-6B protocol. Several design approaches such as clock gating technique, clock strobe design and clock management are used. In order to reduce the area Decimal Matrix C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010