Seismic velocity structure and depth-dependence of anisotropy in the Red Sea and Arabian shield from surface wave analysis

نویسندگان

  • Samantha E. Hansen
  • James B. Gaherty
  • Susan Y. Schwartz
  • Arthur J. Rodgers
  • Abdullah M. S. Al-Amri
چکیده

[1] We investigate the lithospheric and upper mantle shear wave velocity structure and the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy to depths of at least 180 km in the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with 4% anisotropy in the lithosphere and across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithosphere, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models of azimuthal anisotropy, which are constructed from previously determined shear wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocities extend to greater depth than those observed in other continental rift and oceanic ridge environments. The depth extent of these low velocities combined with the sharp velocity contrast across the LAB may indicate the influence of the Afar hot spot and the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plateand density-driven flow associated with rifting processes in the Red Sea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multistep approach for joint modeling of surface wave dispersion and teleseismic receiver functions: Implications for lithospheric structure of the Arabian Peninsula

[1] We present a multiple step procedure for joint modeling of surface wave group velocity dispersion curves and teleseismic receiver functions for lithospheric velocity structure. The method relies on an initial grid search for a simple crustal structure, followed by a formal iterative inversion, an additional grid search for shear wave velocity in the mantle, and finally, forward modeling of ...

متن کامل

Relationship between head wave amplitudes and seismic refraction velocities to detect lateral variation in the refractor

Refractor ambiguities are big problem in seismic refraction method especially in seismic engineering. There can be hidden subsurface geological phenomena such as hidden faults and shear zones which are not simply predicted by the travel-time graph or some geophysical methods. Head wave amplitudes are used to show the resolution of refractor ambiguities and the existence of anisotropy in complex...

متن کامل

Seismic Structure of the Arabian Shield Lithosphere and Red Sea Margin

Seismic Structure of the Arabian Shield Lithosphere and Red Sea Margin Andrew Nyblade, Yongcheol Park, Arthur Rodgers, and Abdullah Al-Amri Department of Geosciences, Penn State University, University Park, PA 16802, Seismology Group, Lawrence Livermore National Laboratory, Livermore, CA 94551, King Saud University, Geology Department and Seismic Studies Center, P.O. Box 2455, Riyadh, Saudi Arabia

متن کامل

Shear zones in the Proterozoic lithosphere of the Arabian Shield and the nature of the Hales discontinuity

Seismic velocity discontinuities are commonly found within the upper 100 km of the mantle lithosphere, with great variability in their depth, lateral extent, and the polarity of velocity jump. Among the more commonly observed is the ‘80 km’ or Hales discontinuity, identified in a variety of tectonic environments, and sometimes associated with seismic anisotropy. Teleseismic receiver functions f...

متن کامل

Seismic imaging of mantle transition zone discontinuities beneath the northern Red Sea and adjacent areas

S U M M A R Y The dramatic asymmetry in terms of surface elevation, Cenozoic volcanisms and earthquake activity across the Red Sea is an enigmatic issue in global tectonics, partially due to the unavailability of broad-band seismic data on the African Plate adjacent to the Red Sea. Here, we report the first comprehensive image of the mantle transition zone (MTZ) discontinuities using data from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008