Regularized HSS Iteration Method for Saddle - Point Linear Systems

نویسندگان

  • Zhong-Zhi Bai
  • Michele Benzi
چکیده

We propose a class of regularized Hermitian and skew-Hermitian splitting methods for the solution of large, sparse linear systems in saddle-point form. These methods can be used as stationary iterative solvers or as preconditioners for Krylov subspace methods. We establish unconditional convergence of the stationary iterations and we examine the spectral properties of the corresponding preconditioned matrix, showing that the eigenvalues are clustered near 0 and 2 when the iteration parameter is close to 0. Inexact variants are also considered. Numerical results on saddle-point linear systems arising from the discretization of a Stokes problem and of a distributed control problem show that optimal convergence behavior can be achieved when using inexact variants of the proposed preconditioners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized HSS iteration methods for saddle-point linear systems

We propose a class of regularized Hermitian and skew-Hermitian splitting methods for the solution of large, sparse linear systems in saddle-point form. These methods can be used as stationary iterative solvers or as preconditioners for Krylov subspacemethods.We establish unconditional convergence of the stationary iterations and we examine the spectral properties of the corresponding preconditi...

متن کامل

A Generalization of the Hermitian and Skew-hermitian Splitting Iteration∗

This paper is concerned with a generalization of the Hermitian and skew-Hermitian (HSS) splitting iteration for solving positive definite, non-Hermitian linear systems. It is shown that the new scheme can outperform the standard HSS method in some situations and can be used as an effective preconditioner for certain linear systems in saddle point form. Numerical experiments using discretization...

متن کامل

A generalization of the Hermitian and skew-Hermitian splitting iteration method for solving Sylvester equations

This paper is concerned with a generalization of the Hermitian and skew-Hermitian splitting iteration for solving positive definite, non-Hermitian linear systems. It is shown that the new scheme has some advantages over the standard HSS method, and can be used as an effective preconditioner for certain linear systems in saddle point form. Numerical experiments using discretizations of incompres...

متن کامل

Generalized Accelerated Hermitian and Skew-Hermitian Splitting Methods for Saddle-Point Problems

We generalize the accelerated Hermitian and skew-Hermitian splitting (AHSS) iteration methods for large sparse saddle-point problems. These methods involve four iteration parameters whose special choices can recover the preconditioned HSS and accelerated HSS iteration methods. Also a new efficient case is introduced and we theoretically prove that this new method converges to the unique solutio...

متن کامل

A Relaxed Hss Preconditioner for Saddle Point Problems from Meshfree Discretization

In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the most widely used meshfree methods for solving partial differential equations. The RHSS preconditioner is constructed much closer to the coefficient matrix than the well-known HSS preco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016