EEG decoding of semantic category reveals distributed representations for single concepts.
نویسندگان
چکیده
Achieving a clearer picture of categorial distinctions in the brain is essential for our understanding of the conceptual lexicon, but much more fine-grained investigations are required in order for this evidence to contribute to lexical research. Here we present a collection of advanced data-mining techniques that allows the category of individual concepts to be decoded from single trials of EEG data. Neural activity was recorded while participants silently named images of mammals and tools, and category could be detected in single trials with an accuracy well above chance, both when considering data from single participants, and when group-training across participants. By aggregating across all trials, single concepts could be correctly assigned to their category with an accuracy of 98%. The pattern of classifications made by the algorithm confirmed that the neural patterns identified are due to conceptual category, and not any of a series of processing-related confounds. The time intervals, frequency bands and scalp locations that proved most informative for prediction permit physiological interpretation: the widespread activation shortly after appearance of the stimulus (from 100 ms) is consistent both with accounts of multi-pass processing, and distributed representations of categories. These methods provide an alternative to fMRI for fine-grained, large-scale investigations of the conceptual lexicon.
منابع مشابه
Extracting Spatiotemporal Word and Semantic Representations from Multiscale Neurophysiological Recordings in Humans
With the recent advent of neuroimaging techniques, the majority of the research studying the neural basis of language processing has focused on the localization of various lexical and semantic functions. Unfortunately, the limited time resolution of functional neuroimaging prevents a detailed analysis of the dynamics involved in word recognition, and the hemodynamic basis of these techniques pr...
متن کاملIdentifying Object Categories from Event-Related EEG: Toward Decoding of Conceptual Representations
Multivariate pattern analysis is a technique that allows the decoding of conceptual information such as the semantic category of a perceived object from neuroimaging data. Impressive single-trial classification results have been reported in studies that used fMRI. Here, we investigate the possibility to identify conceptual representations from event-related EEG based on the presentation of an o...
متن کاملEEG decoding of spoken words in bilingual listeners: from words to language invariant semantic-conceptual representations
Spoken word recognition and production require fast transformations between acoustic, phonological, and conceptual neural representations. Bilinguals perform these transformations in native and non-native languages, deriving unified semantic concepts from equivalent, but acoustically different words. Here we exploit this capacity of bilinguals to investigate input invariant semantic representat...
متن کاملBrain-based translation: fMRI decoding of spoken words in bilinguals reveals language-independent semantic representations in anterior temporal lobe.
Bilinguals derive the same semantic concepts from equivalent, but acoustically different, words in their first and second languages. The neural mechanisms underlying the representation of language-independent concepts in the brain remain unclear. Here, we measured fMRI in human bilingual listeners and reveal that response patterns to individual spoken nouns in one language (e.g., "horse" in Eng...
متن کاملJoint Embedding of Hierarchical Categories and Entities for Concept Categorization and Dataless Classification
Existing work learning distributed representations of knowledge base entities has largely failed to incorporate rich categorical structure, and is unable to induce category representations. We propose a new framework that embeds entities and categories jointly into a semantic space, by integrating structured knowledge and taxonomy hierarchy from large knowledge bases. Our framework enables to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain and language
دوره 117 1 شماره
صفحات -
تاریخ انتشار 2011