Coupled Geodesic Active Regions for Image Segmentation
نویسندگان
چکیده
This paper presents a novel variational method for image segmentation which is obtained by unifying boundary and region-based information sources under the Geodesic Active Region framework. A statistical analysis over the observed density function (image histogram) using a mixture of Gaussian elements, indicates the number of the di erent regions and their intensity properties. Then, the boundary information is determined using a probabilistic edge detector, while the region information is given directly from the observed image using the conditional probability density functions of the mixture model. The de ned objective function is minimized using a gradient-descent method where a level set approach is used to implement the resulting PDE system. According to the motion equations [PDE], the set of initial curves is propagated towards the segmentation result under the in uence of boundary and region-based segmentation forces, and being constrained by a regularity force. The changes of topology are naturally handled thanks to the level set implementation, while a coupled multi-phase propagation is adopted that increases the robustness and the convergence rate by introducing a coupled system of equations for the di erent level set functions. Besides, to reduce the required computational cost and to decrease the risk of convergence to a local minimum, a multi-scale approach is also considered. The performance of our method is demonstrated on a variety of synthetic and real images. Key-words: Image Segmentation, Maximum Likelihood, Geodesic Active Regions, Level Set Theory, Multi-phase Propagation, Multi-scale Segmentation. This work was funded in part under the VIRGO research network (EC Contract No ERBFMRX-CT96-0049) of the TMR Programme. e-mail: {nparagio,der}@sophia.inria.fr http://www-sop.inria.fr/robotvis/personnel/{nparagio,der}/ Couplage des Régions Actives Géodésiques pour la Segmentation d'Image Résumé : Dans ce rapport, nous présentons une approche variationnelle pour traiter le problème de la segmentation d'image à l'aide du modèle deRégions Actives Géodésiques qui permet de prendre en compte de manière uni ée les informations liées aux régions et aux contours. En premier, l'histogramme de l'image observée est approximé par une mixture de Gaussienne. Cette densité de probabilité est ensuite utilisée a n de déduire le nombre de régions et leurs propriétés statistiques. Les contours des régions sont ensuite caractérisés par une analyse statistique qui permet de dé nir une énergie qui inclut aussi bien un terme de région qu'un terme de contour. L'équation d'Euler-Lagrange associée à la minimisation de l'énergie est alors résolue à l'aide de la méthode des courbes de niveaux. Un ensemble de courbes initiales va ainsi se déplacer sous l'in uence d'une contrainte de régularite et de forces associées aux contours et aux régions. Les changements de topologie sont naturellement traités grâce à la mise en oeuvre d'une approche à base de courbes de niveau. A n d'augmenter la robustesse de l'approche et pouvoir par exemple segmenter aussi bien les éventuelles parties intérieures qu'extérieures des régions, nous proposons et développons une propagation multi-phase à base d'un système d'EDP couples. A n de réduire le coût de calcul exigé, une approche multi-échelle est considérée. Plusieurs résultats expérimentaux, obtenues à partir de séquences d'images réelles, illustrent les diverses potentialités de cette approche. Mots-clés : Segmentation d'image, régions actives géodésiques, théorie de courbes de niveau, propagation multi-phase, segmentation multi-échelle. Coupled Geodesic Active Regions for Image Segmentation 3
منابع مشابه
Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملVariational Image Segmentation by Unifying Region and Boundary Information
This paper presents a novel variational image segmentation technique that unifies both geodesic active contours and geodesic active regions. The originality of the method is the automatic and dynamic global weighting of the respective local equations of motion. A new stopping function for the geodesic active contours is also introduced, which proves to have a better behavior in the vicinity of ...
متن کاملناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کاملCoupled Geodesic Active Regions for Image Segmentation: A Level Set Approach
This paper presents a novel variational method for image seg mentation that uni es boundary and region based information sources under the Geodesic Active Region framework A statistical analysis based on the Minimum Description Length criterion and the Maximum Likeli hood Principle for the observed density function image histogram using a mixture of Gaussian elements indicates the number of the...
متن کاملGeodesic Colour Active Contour Resistent to Weak Edges and Noise
The standard geometric or geodesic active contour is a powerful segmentation method, yet it is susceptible to weak edges and image noise. We propose a new region-aided, geometric, colour active contour that integrates gradient flow forces with region constraints. These constraints are composed of image region vector flow forces obtained through the diffusion of the region segmentation map. The ...
متن کاملDirectional geodesic active contour for image segmentation
By incorporating the image gradient directional information into the geodesic active contour model, we propose a novel active contour model called directional geodesic active contour, which has the advantage of selectively detecting the image edges with different gradient directions. The experiment results show the high performance of the proposed active contour in image segmentation, especiall...
متن کامل