Evolutionary Convergence on Sleep Loss in Cavefish Populations

نویسندگان

  • Erik R. Duboué
  • Alex C. Keene
  • Richard L. Borowsky
چکیده

Patterns of sleep vary widely among species, but the functional and evolutionary principles responsible for this diversity remain unknown. The characin fish, Astyanax mexicanus, has eyed surface and numerous blind cave populations. The cave populations are largely independent in their origins, and the species is ideal for studying the genetic bases of convergent evolution. Here we show that this system is also uniquely valuable for the investigation of variability in patterns of sleep. We find that a clearly defined change in ecological conditions, from surface to cave, is correlated with a dramatic reduction in sleep in three independently derived cave populations of A. mexicanus. Analyses of surface × cave hybrids show that the alleles for reduced sleep in the Pachón and Tinaja cave populations are dominant in effect to the surface alleles. Genetic analysis of hybrids between surface and Pachón cavefish suggests that only a small number of loci with dominant effects are involved. Our results demonstrate that sleep is an evolutionarily labile phenotype, highly responsive to changes in ecological conditions. To our knowledge, this is the first example of a single species with a convergence on sleep loss exhibited by several independently evolved populations correlated with population-specific ecologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypocretin underlies the evolution of sleep loss in the Mexican cavefish

The duration of sleep varies dramatically between species, yet little is known about the genetic basis or evolutionary factors driving this variation in behavior. The Mexican cavefish, Astyanax mexicanus, exists as surface populations that inhabit rivers, and multiple cave populations with convergent evolution on sleep loss. The number of Hypocretin/Orexin (HCRT)-positive hypothalamic neurons i...

متن کامل

To see or not to see: evolution of eye degeneration in mexican blind cavefish.

The evolutionary mechanisms responsible for the loss of eyes in cave animals are still unresolved. Hypotheses invoking natural selection or neutral mutation have been advanced to explain eye regression. Here we describe comparative molecular and developmental studies in the teleost Astyanax mexicanus that shed new light on this problem. A. mexicanus is a single species consisting of a sighted s...

متن کامل

Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus.

The sclera is the tough outer covering of the eye that provides structural support and helps maintain intraocular pressure. In some fishes, reptiles, and birds, the sclera is reinforced with an additional ring of hyaline cartilage or bone that forms from scleral ossicles. Currently, the evolutionary and genetic basis of scleral ossification is poorly understood, especially in teleost fishes. We...

متن کامل

A Potential Benefit of Albinism in Astyanax Cavefish: Downregulation of the oca2 Gene Increases Tyrosine and Catecholamine Levels as an Alternative to Melanin Synthesis

Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the mel...

متن کامل

The cavefish genome reveals candidate genes for eye loss

Natural populations subjected to strong environmental selection pressures offer a window into the genetic underpinnings of evolutionary change. Cavefish populations, Astyanax mexicanus (Teleostei: Characiphysi), exhibit repeated, independent evolution for a variety of traits including eye degeneration, pigment loss, increased size and number of taste buds and mechanosensory organs, and shifts i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011