Mean-square and Asymptotic Stability of Numerical Methods for Stochastic Ordinary Diierential Equations
نویسنده
چکیده
Stability analysis of numerical methods for ordinary diierential equations is motivated by the question \for what choices of stepsize does the numerical method reproduce the characteristics of the test equation?" We study a linear test equation with a multiplicative noise term, and consider mean-square and asymptotic stability of a stochastic version of the Theta Method. We extend some mean-square stability results in Saito and Mit-sui, SIAM. In particular, we show that an extension of the deterministic A-stability property holds. We also plot mean-square stability regions for the case where the test equation has real parameters. For asymptotic stability, we show that the issue reduces to nding the expected value of a parametrized random variable. We combine analytical and numerical techniques to get insights into the stability properties. For a variant of the method that has been proposed in the literature we obtain precise analytic expressions for the asymptotic stability region. This allows us to prove a number of results. The technique introduced is widely applicable, and we use it to show that a fully implicit method suggested by Kloeden and Platen has an asymptotic stability extension of the deterministic A-stability property. We also use the approach to explain some numerical results reported in Milstein, Platen and Schurz,
منابع مشابه
Mean-Square and Asymptotic Stability of the Stochastic Theta Method
Stability analysis of numerical methods for ordinary differential equations (ODEs) is motivated by the question “for what choices of stepsize does the numerical method reproduce the characteristics of the test equation?” We study a linear test equation with a multiplicative noise term, and consider mean-square and asymptotic stability of a stochastic version of the theta method. We extend some ...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملNumerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملGlobal Asymptotic Stability of Solutions of Cubic Stochastic Difference Equations
Global almost sure asymptotic stability of solutions of some nonlinear stochastic difference equations with cubic-type main part in their drift and diffusive part driven by square-integrable martingale differences is proven under appropriate conditions in R1. As an application of this result, the asymptotic stability of stochastic numerical methods, such as partially drift-implicit θ-methods wi...
متن کامل