Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae.
نویسندگان
چکیده
Glucose repression is one of the main limitations in mixed lignocellulosic sugar fermentation for cost-effective production of fuels and chemicals. Here we report a novel strategy to overcome glucose repression by co-expressing a cellobiose transporter and a β-glucosidase in an engineered d-xylose-utilizing Saccharomyces cerevisiae strain. The resulting strain can simultaneously utilize cellobiose and d-xylose for ethanol production.
منابع مشابه
Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose
BACKGROUND Cellobiose and xylose co-fermentation holds promise for efficiently producing biofuels from plant biomass. Cellobiose phosphorylase (CBP), an intracellular enzyme generally found in anaerobic bacteria, cleaves cellobiose to glucose and glucose-1-phosphate, providing energetic advantages under the anaerobic conditions required for large-scale biofuel production. However, the efficienc...
متن کاملEvaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.
In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathwa...
متن کاملDirected evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae.
Introduction of a cellobiose utilization pathway consisting of a cellodextrin transporter and a β-glucosidase into Saccharomyces cerevisiae enables co-fermentation of cellobiose and xylose. Cellodextrin transporter 1 (CDT1) from Neurospora crassa has been established as an effective transporter for the engineered cellobiose utilization pathways. However, cellodextrin transporter 2 (CDT2) from t...
متن کاملCofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain.
We demonstrate improved ethanol yield and productivity through cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain expressing genes coding for cellodextrin transporter (cdt-1) and intracellular β-glucosidase (gh1-1) from Neurospora crassa. Simultaneous fermentation of cellobiose and galactose can be applied to producing biofuels from hydrolysates of marin...
متن کاملEngineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation.
The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily glucose and xylose. However, strains of Saccharomyces cerevisiae presently used in bioethanol production ferment glucose but not xylose. Yeasts engineered to ferment xylose do so slowly, and cannot utilize xylose until glucose is completely consumed. To overcome these bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular bioSystems
دوره 6 11 شماره
صفحات -
تاریخ انتشار 2010