Lectures on Lyapunov Exponents and Smooth Ergodic Theory

نویسنده

  • L. Barreira
چکیده

1. Lyapunov Exponents for Differential Equations 2. Abstract Theory of Lyapunov Exponents 3. Regularity of Lyapunov Exponents Associated with Differential Equations 4. Lyapunov Stability Theory 5. The Oseledets Decomposition 6. Dynamical Systems with Nonzero Lyapunov Exponents. Multiplicative Ergodic Theorem 7. Nonuniform Hyperbolicity. Regular Sets 8. Examples of Nonuniformly Hyperbolic Systems 9. Existence of Local Stable Manifolds 10. Basic Properties of Local Stable and Unstable Manifolds 11. Absolute Continuity. Holonomy Map 12. Absolute Continuity and Smooth Invariant Measures 13. Ergodicity of Nonuniformly Hyperbolic Systems Preserving Smooth Measures 14. Local Ergodicity 15. The Entropy Formula 16. Ergodic Properties of Geodesic Flows on Compact Surfaces of Nonpositive Curvature

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lyapunov Exponents and Smooth Ergodic Theory

This book provides a systematic introduction to smooth ergodic theory, including the general theory of Lyapunov exponents, nonuniform hyperbolic theory, stable manifold theory emphasizing absolute continuity of invariant foliations, and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. The book can be used as a primary textbook for a special topics course on nonuniform hy...

متن کامل

Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics

Introduction 1 1. Lyapunov exponents of dynamical systems 3 2. Examples of systems with nonzero exponents 6 3. Lyapunov exponents associated with sequences of matrices 18 4. Cocycles and Lyapunov exponents 24 5. Regularity and Multiplicative Ergodic Theorem 31 6. Cocycles over smooth dynamical systems 46 7. Methods for estimating exponents 54 8. Local manifold theory 62 9. Global manifold theor...

متن کامل

On the Work of Dolgopyat on Partial and Nonuniform Hyperbolicity

The paper is a non-technical survey and is aimed to illustrate Dolgopyat’s profound contributions to smooth ergodic theory. I will discuss some of Dolgopyat’s work on partial hyperbolicity and nonuniform hyperbolicity with emphasis on interaction between the two – the class of dynamical systems with mixed hyperbolicity. On the one hand, this includes uniformly partially hyperbolic diffeomorphis...

متن کامل

What Are Lyapunov Exponents, and Why Are They Interesting?

At the 2014 International Congress of Mathematicians in Seoul, South Korea, Franco-Brazilian mathematician Artur Avila was awarded the Fields Medal for “his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle.” Although it is not explicitly mentioned in this citation, there is a second u...

متن کامل

Extremal Lyapunov Exponents: an Invariance Principle and Applications

We propose a new approach to analyzing dynamical systems that combine hyperbolic and non-hyperbolic (“center”) behavior, e.g. partially hyperbolic diffeomorphisms. A number of applications illustrate its power. We find that any ergodic automorphism of the 4-torus with two eigenvalues in the unit circle is stably Bernoulli among symplectic maps. Indeed, any nearby symplectic map has no zero Lyap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007