Carbon-nanofiber-based nanocomposite membrane as a highly stable solid-state junction for reference electrodes.

نویسندگان

  • Glen D O'Neil
  • Raluca Buiculescu
  • Samuel P Kounaves
  • Nikos A Chaniotakis
چکیده

There is currently a need for a reliable solid-state reference electrode, especially in applications such as autonomous sensing or long-term environmental monitoring. We present here for the first time a novel solid-state nanofiber junction reference electrode (NFJRE) incorporating a junction consisting of poly(methyl methacrylate) and carbon graphene stacked nanofibers. The NFJRE operates by using the membrane polymer junction, which has a very high glass transition temperature (T(g)) and small diffusion coefficient, to control the diffusion of ions, and the carbon nanofibers lower the junction resistance and act as ion-to-electron transducers. The fabrication of the NFJRE is detailed, and its behavior is characterized in terms of its impedance, stability, and behavior in comparison with traditional reference electrodes. The NFJRE showed a response of <5-13 mV toward a variety of electrolyte solutions from 10(-5) to 10(-2) M, <10 mV over a pH range of 2-12, and excellent behavior when used with voltammetric methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN) was employed as the solid contact layer f...

متن کامل

Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes

A novel potentiometric solid-state reference electrode containing single-walled carbon nanotubes as the transducer layer between a polyacrylate membrane and the conductor is reported here. Single-walled carbon nanotubes act as an efficient transducer of the constant potentiometric signal originating from the reference membrane containing the Ag/AgCl/Cl(-) ions system, and they are needed to obt...

متن کامل

Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors

In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...

متن کامل

Electrospun metal nanofiber webs as high-performance transparent electrode.

Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as rep...

متن کامل

Multi-walled Carbon Nanotubes as Ion-to-Electron Transducer in All-Solid-State Potassium Ion-Selective Electrodes

Carbon nanostructured materials in general and carbon nanotubes in particular exhibit remarkable and unique properties that make them promising candidates for a wide range of applications. In the field of sensors, for example, carbon-based materials such as fullerene (C60) [1], three-dimensionally ordered macroporous (3DOM) carbon [2], and single-walled carbon nanotubes (SWCNTs) [3] have been u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 83 14  شماره 

صفحات  -

تاریخ انتشار 2011