A Kinetic Model for Cell Damage Caused by Oligomer Formation.

نویسندگان

  • Liu Hong
  • Ya-Jing Huang
  • Wen-An Yong
چکیده

It is well known that the formation of amyloid fiber may cause invertible damage to cells, although the underlying mechanism has not been fully understood. In this article, a microscopic model considering the detailed processes of amyloid formation and cell damage is constructed based on four simple assumptions, one of which is that cell damage is raised by oligomers rather than mature fibrils. By taking the maximum entropy principle, this microscopic model in the form of infinite mass-action equations together with two reaction-convection partial differential equations (PDEs) has been greatly coarse-grained into a macroscopic system consisting of only five ordinary differential equations (ODEs). With this simple model, the effects of primary nucleation, elongation, fragmentation, and protein and seeds concentration on amyloid formation and cell damage have been extensively explored and compared with experiments. We hope that our results will provide new insights into the quantitative linkage between amyloid formation and cell damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECT OF ELECTRIC FIELD ON PD ACTIVITY AND DAMAGE INTO SOLID DIELECTRIC MATERIALS

Abstract – In this paper, the effect of applied electric field on the damage due to partial discharges activity into the surroundings dielectrics of a narrow channel encapsulated within the volume of a dielectric material is evaluated using a kinetic model based on Particle in Cell - Monte Carlo Collision (PIC-MCC) model. After application of an electric field across a dielectric material which...

متن کامل

Estimation of Kinetic Parameters of Coking Reaction Rate in Pyrolysis of Naphtha

The run length of cracking furnaces is limited by the formation of coke on the internal skin of the reactor tubes. The reaction mechanism of thermal cracking of hydrocarbons is generally accepted as free-radical chain reactions. On the basis of the plant output data and the insight in the mechanisms for coke formation in pyrolysis reactors, a kinetic model describing the coke formation has been...

متن کامل

Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation – Part 2: Development of the chemical mechanism and atmospheric implications

Laboratory experiments of efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase were simulated in a box model. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. Upon model sensitivity studies, in which unconstrained rate constants were varied over several orders of magnitude, a set of reaction parameters was found th...

متن کامل

Fermentative Lactic Acid Production by Lactobacilli: Moser and Gompertz Kinetic Models

Lactic acid production in a batch submerged fermentation process by five Lactobacilli: bulgaricus, casei, lactis, delbrueckii and fermentum in lactose fortified whey culture were investigated. Kinetic behavior of Lactobacilli growth rate and lactose utilization was studied based on the Moser and Gompertz kinetic models. Trendline tool in Excel software was applied for fitness assessment of the ...

متن کامل

Evaluation of Cell Growth and Substrate Consumption Kinetic of Five Different Lactobacilli in a Submerged Batch Whey Culture for Lactic Acid Production

Cell growth and lactose consumption profile of five Lactobacillus Strains: bulgaricus, casei, lactis, delbrueckii and fermentum has been investigated. Experiments of cell growth and substrate utilization were conducted in batch submerged culture of whey with added lactose and some other growth factors. Fitness assessment of experimental data on the cell growth and lactose consumption by Monod k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 109 7  شماره 

صفحات  -

تاریخ انتشار 2015