Assche, Multiple Wilson and Jacobi-Piñeiro polynomials, manuscript

نویسنده

  • W. Van Assche
چکیده

We introduce multiple Wilson polynomials, which give a new example of multiple orthogonal polynomials (Hermite-Padé polynomials) of type II. These polynomials can be written as a Jacobi-Piñeiro transform, which is a generalization of the Jacobi transform for Wilson polynomials, found by T.H. Koornwinder. Here we need to introduce Jacobi and JacobiPiñeiro polynomials with complex parameters. Some explicit formulas are provided for both Jacobi-Piñeiro and multiple Wilson polynomials, one of them in terms of Kampé de Fériet series. Finally we look at some limiting relations and construct a part of a multiple AT-Askey table.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Wilson and Jacobi-Piñeiro polynomials

We introduce multiple Wilson polynomials, which give a new example of multiple orthogonal polynomials (Hermite-Padé polynomials) of type II. These polynomials can be written as a Jacobi-Piñeiro transform, which is a generalization of the Jacobi transform for Wilson polynomials, found by T.H. Koornwinder. Here we need to introduce Jacobi and JacobiPiñeiro polynomials with complex parameters. Som...

متن کامل

Multiple Orthogonal Polynomials and a Counterexample to Gaudin Bethe Ansatz Conjecture

Jacobi polynomials are polynomials whose zeros form the unique solution of the Bethe Ansatz equation associated with two sl2 irreducible modules. We study sequences of r polynomials whose zeros form the unique solution of the Bethe Ansatz equation associated with two highest weight slr+1 irreducible modules, with the restriction that the highest weight of one of the modules is a multiple of the...

متن کامل

4 Multiple little q - Jacobi polynomials ⋆

We introduce two kinds of multiple little q-Jacobi polynomials p~n with multi-index ~n = (n1, n2, . . . , nr) and degree |~n| = n1 + n2 + · · · + nr by imposing orthogonality conditions with respect to r discrete little q-Jacobi measures on the exponential lattice {qk, k = 0, 1, 2, 3, . . .}, where 0 < q < 1. We show that these multiple little qJacobi polynomials have useful q-difference proper...

متن کامل

Upward Extension of the Jacobi Matrix for Orthogonal Polynomials

Orthogonal polynomials on the real line always satisfy a three-term recurrence relation. The recurrence coefficients determine a tridiagonal semi-infinite matrix (Jacobi matrix) which uniquely characterizes the orthogonal polynomials. We investigate new orthogonal polynomials by adding to the Jacobi matrix r new rows and columns, so that the original Jacobi matrix is shifted downward. The r new...

متن کامل

Irrationality of ζ q ( 1 ) and ζ q ( 2 ) ?

In this paper we show how one can obtain simultaneous rational approximants for ζq(1) and ζq(2) with a common denominator by means of Hermite-Padé approximation using multiple little q-Jacobi polynomials and we show that properties of these rational approximants prove that 1, ζq(1), ζq(2) are linearly independent over Q. In particular this implies that ζq(1) and ζq(2) are irrational. Furthermor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008