On the Second Weight of Generalized Reed-Muller Codes1

نویسنده

  • Olav Geil
چکیده

Not much is known about the weight distribution of the generalized Reed-Muller code RMq(s,m) when q > 2, s > 2 and m ≥ 2 . Even the second weight is only known for values of s being smaller than or equal to q/2. In this paper we establish the second weight for values of s being smaller than q. For s greater than (m− 1)(q − 1) we then find the first s+ 1− (m− 1)(q − 1) weights. For the case m = 2 the second weight is now known for all values of s. The results are derived mainly by using Gröbner basis theoretical methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on low weight codewords of generalized affine and projective Reed-Muller codes

A brief survey on low weight codewords of generalized Reed-Muller codes and projective generalized Reed-Muller codes is presented. In the affine case some information about the words that reach the second distance is given. Moreover the second weight of the projective Reed-Muller codes is estimated, namely a lower bound and an upper bound of this weight are given.

متن کامل

On Low Weight Codewords of Generalized Affine and Projective Reed - Muller Codes ( Extended abstract )

We propose new results on low weight codewords of affine and projective generalized Reed-Muller codes. In the affine case we give some results on codewords that cannot reach the second weight also called the next to minimal distance. In the projective case the second distance of generalized Reed-Muller codes is estimated, namely a lower bound and an upper bound of this weight are given.

متن کامل

On low weight codewords of generalized affine and projective Reed-Muller codes

We propose new results on low weight codewords of affine and projective generalized Reed-Muller codes. In the affine case we prove that if the size of the working finite field is large compared to the degree of the code, the low weight codewords are products of affine functions. Then in the general case we study some types of codewords and prove that they cannot be second, thirds or fourth weig...

متن کامل

On the third weight of generalized Reed-Muller codes

In this paper, we study the third weight of generalized Reed-Muller codes. Using results from [6], we prove under some restrictive condition that the third weight of generalized Reed-Muller codes depends on the third weight of generalized Reed-Muller codes of small order with two variables. In some cases, we are able to determine the third weight and the third weight codewords of generalized Re...

متن کامل

The second weight of generalized Reed-Muller codes

The second weight of the Generalized Reed-Muller code of order d over the finite field with q elements is now known for d < q and d > (n − 1)(q − 1). In this paper, we determine the second weight for the other values of d which are not multiple of q − 1 plus 1. For d = a(q − 1) + 1 we only give an estimate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007