Decay-accelerating factor is a component of subendothelial extracellular matrix in vitro, and is augmented by activation of endothelial protein kinase C.
نویسندگان
چکیده
The vasculature is protected from complement activation by regulatory molecules expressed on endothelial cells. However, complement fixation also occurs on subendothelial extracellular matrix (ECM) in vitro, and is initiated simply by retraction or removal of overlying cells. To investigate mechanisms controlling vascular complement activation, we examined subendothelial ECM for the presence of complement regulatory proteins. Decay-accelerating factor (DAF) was found on both human umbilical vein endothelial cells (HUVEC) and in their ECM; in contrast, membrane cofactor protein was found only on cells. ECM and HUVEC DAF were distinguishable based on several properties. While HUVEC DAF is anchored to cell membranes by a phospholipase C-sensitive glycosylphosphatidylinositol linkage. DAF was removed from ECM only by proteolytic digestion. Cytokines (TNF-alpha, IL-1 beta, IL-4) increased HUVEC DAF expression, but had minimal effect on ECM DAF; in contrast, phorbol 12-myristate 13-acetate (PMA) and wheat germ agglutinin markedly increased DAF on both HUVEC and ECM. The effect of PMA was mediated by activation of protein kinase C. The complement regulatory potential of ECM DAF was assessed by evaluating the effect of DAF-neutralizing antibodies on C3 deposition on HUVEC ECM, as well as on HeLa cell ECM, which had a considerably higher DAF content. DAF blockade enhanced C3 deposition on HeLa ECM, but had no effect on HUVEC ECM. As ECM DAF is likely to be immobile, i.e. able to interact only with C3 convertases forming in the immediate vicinity, its ability to regulate complement activation may be particularly density dependent, and contingent on endothelial-dependent up-regulation.
منابع مشابه
Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملAnti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملEndothelial cell adhesion to the extracellular matrix induces c-Src-dependent VEGFR-3 phosphorylation without the activation of the receptor intrinsic kinase activity.
RATIONALE Integrins cooperate with growth factor receptors to promote downstream signaling for cell proliferation and migration. However, the mechanism of receptor activation is still unknown. OBJECTIVE To analyze the mechanism of phosphorylation of the vascular endothelial growth factor receptor (VEGFR)-3 by cell adhesion. METHODS AND RESULTS We show that VEGFR-3 phosphorylation, induced b...
متن کاملThe subendothelial extracellular matrix modulates JNK activation by flow.
Atherosclerosis begins as local inflammation of artery walls at sites of disturbed flow. JNK (c-Jun NH(2)-terminal kinase) is thought to be among the major regulators of flow-dependent inflammatory gene expression in endothelial cells in atherosclerosis. We now show that JNK activation by both onset of laminar flow and long-term oscillatory flow is matrix-specific, with enhanced activation on f...
متن کاملActivation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of immunology
دوره 28 3 شماره
صفحات -
تاریخ انتشار 1998