Riluzole, a glutamate release inhibitor, induces loss of righting reflex, antinociception, and immobility in response to noxious stimulation in mice.
نویسندگان
چکیده
BACKGROUND The general anesthetic state comprises behavioral and perceptual components, including amnesia, unconsciousness, analgesia, and immobility. In vitro, glutamatergic excitatory neurons are important targets for anesthetic action at the cellular and microcircuits levels. Riluzole (2-amino-6-[trifluoromethoxy]benzothiazole) is a neuroprotective drug that inhibits glutamate release from nerve terminals in the central nervous system. Here, we examined in vivo the ability of riluzole to produce components of the general anesthetic state through a selective blockade of glutamatergic neurotransmission. METHODS Riluzole was administered intraperitoneally in adult male ddY mice. To assess the general anesthetic components, three end-points were used: 1) loss of righting reflex (LORR; as a measure of unconsciousness), 2) loss of movement in response to noxious stimulation (as a measure of immobility), and 3) loss of nociceptive response (as a measure of analgesia). RESULTS The intraperitoneal administration of riluzole induced LORR in a dose-dependent fashion with a 50% effective dose value of 27.4 (23.3-32.2; 95% confidence limits) mg/kg. The behavioral and microdialysis studies revealed that time-course changes in impairment and LORR induced by riluzole corresponded with decreased glutamate levels in the mouse brain. This suggests that riluzole-induced LORR (unconsciousness) could result, at least in part, from its ability to decrease brain glutamate concentrations. Riluzole dose-dependently produced not only LORR, but also loss of movement in response to painful stimulation (immobility), and loss of nociceptive response (analgesia) with 50% effective dose values of 43.0 (37.1-49.9), and 10.0 (7.4-13.5) mg/kg, respectively. These three dose-response curves were parallel, suggesting that the behavioral effects of riluzole may be mediated through a common site of action. CONCLUSIONS These findings suggest that riluzole-induced LORR, immobility, and antinociception appear to be associated with its ability to inhibit glutamatergic neurotransmission in the central nervous system.
منابع مشابه
Increased gamma-aminobutyric acid levels in mouse brain induce loss of righting reflex, but not immobility, in response to noxious stimulation.
BACKGROUND The general anesthetic state comprises behavioral and perceptual components, including amnesia, unconsciousness, and immobility. gamma-Aminobutyric acidergic (GABAergic) inhibitory neurotransmission is an important target for anesthetic action at the in vitro cellular level. In vivo, however, the functional relevance of enhancing GABAergic neurotransmission in mediating essential com...
متن کاملThe beneficial effects of riluzole on GFAP and iNOS expression in intrahippocampal Aβ rat model of Alzheimer’s disease
Background and Objective: Alzheimer’s disease (AD) is a neurodegenerative disorder specified by deposition of b-amyloid (Ab) and neuronal loss that leads to learning and memory disturbances. One of the most important causes of AD is glutamate-dependent excitotoxicity in brain regions that is vulnerable to AD. According to previous reported results, it was revealed that riluzole, as a glutamate ...
متن کاملAntinociceptive mechanisms of Rosmarinus officinalis extract in mice using writhing test
Rosemary (Rosmarinus officinalis) is a common household plant grows in many parts of the world, including Iran. Rosemary leaves are used in folk medicine as an antispasmodic, analgesic, diuretic and ntiepileptic agent. The objective of this study was to investigate the antinociceptive mechanisms of rosemary extract using a writhing test as a model of visceral pain. Possible antinociceptive mech...
متن کاملPii: S0304-3959(01)00345-1
Concussion, asphyxia, and systemically administered general anesthetics all induce reversible depression of the organism’s response to noxious stimuli as one of the elements of loss of consciousness. This is so even for barbiturate anesthetics, which have only modest analgesic efficacy at subanesthetic doses. Little is known about the neural circuits involved in this form of antinociception, al...
متن کاملAnalgesic effect of electrical stimulation and microinjection of L-glutamate into the paragigantocellularis nucleus on phasic and tonic pain
The paragigantocellularis (PGi) nucleus constitutes a large portion of the ventral pontomedullary reticular formation. Neurons within the PGi have been implicated in a variety of functions including cardiovascular regulation, respiratory control, pain and analgesia. Investigators have demonstrated that electrical stimulation and microinjection of L-glutamate into the PGi produce antinocicepti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesia and analgesia
دوره 104 6 شماره
صفحات -
تاریخ انتشار 2007