Inhibition of splicing and nuclear retention of pre-mRNA by spliceostatin A in fission yeast.

نویسندگان

  • Chor-Wai Lo
  • Daisuke Kaida
  • Shinichi Nishimura
  • Akihisa Matsuyama
  • Yoko Yashiroda
  • Hiroshi Taoka
  • Ken Ishigami
  • Hidenori Watanabe
  • Hidenori Nakajima
  • Tokio Tani
  • Sueharu Horinouchi
  • Minoru Yoshida
چکیده

Nuclear retention of pre-mRNAs is tightly regulated by several security mechanisms that prevent pre-mRNA export into the cytoplasm. Recently, spliceostatin A, a methylated derivative of a potent antitumor microbial metabolite FR901464, was found to cause pre-mRNA accumulation and translation in mammalian cells. Here we report that spliceostatin A also inhibits splicing and nuclear retention of pre-mRNA in a fission yeast strain that lacks the multidrug resistance protein Pmd1. As observed in mammalian cells, spliceostatin A is bound to components of the SF3b complex in the spliceosome. Furthermore, overexpression of nup211, a homolog of Saccharomyces cerevisiae MLP1, suppresses translation of pre-mRNAs accumulated by spliceostatin A. These results suggest that the SF3b complex has a conserved role in pre-mRNA retention, which is independent of the Mlp1 function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA.

The removal of intervening sequences from transcripts is catalyzed by the spliceosome, a multicomponent complex that assembles on the newly synthesized pre-mRNA. Pre-mRNA translation in the cytoplasm leads to the generation of aberrant proteins that are potentially harmful. Therefore, tight control to prevent undesired pre-mRNA export from the nucleus and its subsequent translation is an essent...

متن کامل

Global analysis of pre-mRNA subcellular localization following splicing inhibition by spliceostatin A.

Spliceostatin A (SSA) is a methyl ketal derivative of FR901464, a potent antitumor compound isolated from a culture broth of Pseudomonas sp no. 2663. These compounds selectively bind to the essential spliceosome component SF3b, a subcomplex of the U2 snRNP, to inhibit pre-mRNA splicing. However, the mechanism of SSA's antitumor activity is unknown. It is noteworthy that SSA causes accumulation ...

متن کامل

Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation

Pre-mRNA splicing is catalyzed by the large ribonucleoprotein spliceosome. Spliceosome assembly is a highly dynamic process in which the complex transitions through a number of intermediates. Recently, the potent anti-tumor compound Spliceostatin A (SSA) was shown to inhibit splicing and to interact with an essential component of the spliceosome, SF3b. However, it was unclear whether SSA direct...

متن کامل

Pre-mRNA splicing is a determinant of histone H3K36 methylation.

A chromatin code appears to mark introns and exons with distinct patterns of nucleosome enrichment and histone methylation. We investigated whether a causal relationship exists between splicing and chromatin modification by asking whether splice-site mutations affect the methylation of histone H3K36. Deletions of the 3' splice site in intron 2 or in both introns 1 and 2 of an integrated β-globi...

متن کامل

Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing.

To examine the stability of yeast (Saccharomyces cerevisiae) pre-mRNA structures, we inserted a series of small sequence elements that generated potential RNA hairpins at the 5' splice site and branch point regions. We analyzed spliceosome assembly and splicing in vitro as well as splicing and nuclear pre-mRNA retention in vivo. Surprisingly, the inhibition of in vivo splicing approximately par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 364 3  شماره 

صفحات  -

تاریخ انتشار 2007