Exploring the basins of attraction of tapping mode atomic force microscopy with capillary force interactions

نویسندگان

  • Nastaran Hashemi
  • Mark Paul
  • Harry Dankowicz
چکیده

We numerically explore the nonlinear dynamics of the oscillating cantilever tip in tapping mode atomic force microscopy. The cantilever dynamics are determined by complex force interactions between the sample surface and the oscillating cantilever tip which are dominated by attractive, adhesive, and repulsive contributions depending on the instantaneous position of the cantilever. We use a model proposed by Zitzler et al that includes a capillary force interaction due to the thin film of water that covers all surfaces as a result of ambient humidity. As the cantilever approaches the surface a meniscus is formed and as the cantilever retracts this water layer forms a neck and eventually breaks. This introduces hysteresis since the formation of the meniscus and the breaking of the water neck occur at different spatial locations during an oscillation of the cantilever. Using forward-time simulation with event handling techniques tailored for situations with rapid changes in force interactions we find three classes of steady-state dynamics: (i) a branch of solutions with periodic dynamics and large amplitude of oscillation; (ii) a branch of solutions with periodic dynamics and small amplitude of oscillation; (iii) windows of irregular aperiodic dynamics. We quantify the global basins of attraction for these solutions by performing a large set of numerical simulations over a wide range of initial conditions. Our findings provide a useful framework for further studies Proceedings of IMECE2007 2007 ASME International Mechanical Engineering Congress and Exposition November 11-15, 2007, Seattle, Washington, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The nonlinear dynamics of tapping mode atomic force microscopy with capillary force interactions

We study the nonlinear dynamics of a tapping mode atomic force microscope with tip-surface interactions that include attractive, repulsive, and capillary force contributions using numerical techniques tailored for hybrid or discontinuous dynamical systems that include forward-time simulation with event handling and numerical pseudo-arclength continuation. We find four branches of periodic solut...

متن کامل

Sensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters

In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...

متن کامل

Phase imaging and stiffness in tapping-mode atomic force microscopy

The dependence of phase angles in tapping-mode atomic force microscopy on the magnitude of tip-sample repulsive interactions was investigated, and phase images of several hard and soft samples were recorded as a function of the free amplitude Ao and the set-point tapping amplitude Asp. The phase angle of probe oscillation increases with decreasing the set-point amplitude ratio Asp/Ao. Phase ima...

متن کامل

Capillary forces in tapping mode atomic force microscopy

We investigated the influence of the relative humidity on amplitude and phase of the cantilever oscillation while operating an atomic force microscope ~AFM! in the tapping mode. If the free oscillation amplitude A0 exceeds a certain critical amplitude Ac , the amplitudeand phase-distance curves show a transition from a regime with a net attractive force between tip and sample to a net repulsive...

متن کامل

Effects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers

Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007