Mobile Robot Navigation for Person Following in Indoor Environments
نویسندگان
چکیده
Service robotics is a rapidly growing area of interest in robotics research. Service robots inhabit human-populated environments and carry out specific tasks. The goal of this dissertation is to develop a service robot capable of following a human leader around populated indoor environments. A classification system for person followers is proposed such that it clearly defines the expected interaction between the leader and the robotic follower. In populated environments, the robot needs to be able to detect and identify its leader and track the leader through occlusions, a common characteristic of populated spaces. An appearance-based person descriptor, which augments the Kinect skeletal tracker, is developed and its performance in detecting and overcoming short and long-term leader occlusions is demonstrated. While following its leader, the robot has to ensure that it does not collide with stationary and moving obstacles, including other humans, in the environment. This requirement necessitates the use of a systematic navigation algorithm. A modified version of navigation function path planning, called the predictive fields path planner, is developed. This path planner models the motion of obstacles, uses a simplified representation of practical workspaces, and generates bounded, stable control inputs which guide the robot to its desired position without collisions with obstacles. The predictive fields path planner is experimentally verified on a non-person follower system and then integrated into the robot navigation module of the person follower system. To
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملA person follower mobile robot system for indoor environments
Person following is integral to robot companion systems and in service and assistive robots operating in various other scenarios. Human populated environments challenge these robots to navigate around highly dynamic workplaces. The primary challenges for these robotic systems, navigation through uncertainty and occlusion detection and handling, are addressed in this paper. Appearance descriptor...
متن کاملBehavior-based Intelligent Robot In Dynamic Indoor Environments
We present a navigation system using multiple sensors for unknown and dynamic indoor environments. To achieve the robustness and flexibility of the mobile robot, we propose a new behavior-based architecture with three groups of clustered (reflexive, purposive, and adaptive) agents that realizes both efficiency in attaining the mission of the robot and robustness against the various kinds or fai...
متن کامل