A comparison between k-Optimum Path Forest and k-Nearest Neighbors supervised classifiers

نویسندگان

  • Roberto Souza
  • Letícia Rittner
  • Roberto de Alencar Lotufo
چکیده

This paper presents the k-Optimum Path Forest (k-OPF) supervised classifier, which is a natural extension of the OPF classifier. k-OPF is compared to the k-Nearest Neighbors (k-NN), Support Vector Machine (SVM) and Decision Tree (DT) classifiers, and we see that k-OPF and k-NN have many similarities. This work shows that the k-OPF is equivalent to the k-NN classifier when all training samples are used as prototypes. Simulations comparing the accuracy results, the decision boundaries and the processing time of the classifiers are presented to experimentally validate our hypothesis. Also, we prove that OPF using themax cost function and the NN supervised classifiers have the same theoretical error bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Pattern Classification Using Optimum-Path Forest

We present a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), and describe one of its classifiers developed for the supervised learning case. This classifier does not require parameters and can handle some overlapping among multiple classes with arbitrary shapes. The method reduces the pattern recognition problem into the computation of an optimum-path forest in ...

متن کامل

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

A comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater

The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...

متن کامل

Comparison of 14 different families of classification algorithms on 115 binary datasets

We tested 14 very different classification algorithms (random forest, gradient boosting machines, SVM linear, polynomial, and RBF 1-hidden-layer neural nets, extreme learning machines, k-nearest neighbors and a bagging of knn, naive Bayes, learning vector quantization, elastic net logistic regression, sparse linear discriminant analysis, and a boosting of linear classifiers) on 115 real life bi...

متن کامل

An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images

An experimental analysis of the use of different neural models for the supervised classification of multisensor remote-sensing data is presented. Three types of neural classifiers are considered: the Multilayer Perceptron, a kind of Structured Neural Network, proposed by the authors, that allows the interpretation of the network operation, and a Probabilistic Neural Network. Furthermore, the k-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2014