Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns
نویسندگان
چکیده
Until recently, it was believed that microbial communities at high salinities are dominated exclusively by Archaea and Bacteria and one eukaryotic species, the alga Dunaliella salina. Recently, it became evident that melanized fungi, so far described only in the crystallization pond of Adriatic salterns within the season of salt production, can be considered as a new group of eukaryotic halophiles. They were represented by black, yeast-like hyphomycetes: Hortaea werneckii, Phaeotheca triangularis, Trimmatostroma salinum, Aureobasidium pullulans, together with phylogenetically closely related Cladosporium species. In the present study, the distribution of the melanized fungal population in five different evaporating ponds in the Adriatic salterns wcovering the entire salinity range (3–30% NaCl)x was followed throughout the year. It appeared in three peaks, at 5–8%, 10–20% and 18–25% NaCl, which correlated primarily with high nitrogen values. At the highest environmental salinities, melanized fungi represented 85–100% of the total isolated mycobiota, but with lowering salinities they were partially replaced by non-melanized fungi and, at the end of the season, with NaCl concentrations below 5%, they were detected only occasionally. Melanized fungi have been isolated from hypersaline waters on three continents, indicating that they are present globally in hypersaline waters of man-made salterns.
منابع مشابه
Extremely Halotolerant and Halophilic Fungi Inhabit Brine in Solar Salterns Around the Globe
For a long time halotolerant and halophilic fungi have been known exclusively as contaminants of food preserved with high concentrations of either salt or sugar. They were first reported in 2000 to be active inhabitants of hypersaline environments, when they were found in man-made solar salterns in Slovenia. Since then, they have been described in different salterns and salt lakes on three cont...
متن کاملHeterotrophic Protists in Hypersaline Microbial Mats and Deep Hypersaline Basin Water Columns
Although hypersaline environments pose challenges to life because of the low water content (water activity), many such habitats appear to support eukaryotic microbes. This contribution presents brief reviews of our current knowledge on eukaryotes of water-column haloclines and brines from Deep Hypersaline Anoxic Basins (DHABs) of the Eastern Mediterranean, as well as shallow-water hypersaline m...
متن کاملThe MAP kinase HwHog1 from the halophilic black yeast Hortaea werneckii: coping with stresses in solar salterns
BACKGROUND Hortaea werneckii is one of the most salt-tolerant species among microorganisms. It has been isolated from hypersaline waters of salterns as one of the predominant species of a group of halophilic and halotolerant melanized yeast-like fungi, arbitrarily named as "black yeasts". It has previously been shown that H. werneckii has distinct mechanisms of adaptation to high salinity envir...
متن کاملLow Water Activity Induces the Production of Bioactive Metabolites in Halophilic and Halotolerant Fungi
The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes...
متن کاملHypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma.
Melanized yeast-like meristematic fungi are characteristic inhabitants of highly stressed environments and are rare eukaryotic extremophiles. Therefore, they are attractive organisms for studies of adaptations. In this study we compared two meristematic species of the genus Trimmatostroma on media of differing water potentials isolated from distinct water-stressed environments: T. salinum from ...
متن کامل