Bradykinin-induced nuclear factor of activated T-cells-dependent transcription in rat dorsal root ganglion neurons.

نویسندگان

  • Joshua G Jackson
  • Yuriy M Usachev
  • Stanley A Thayer
چکیده

Bradykinin produced at sites of tissue injury and inflammation elicits acute pain and alters the sensitivity of nociceptive neurons to subsequent stimuli. We tested the hypothesis that bradykinin could elicit long-lasting changes in nociceptor function by activating members of the nuclear factor of activated T-cells (NFAT) family of transcription factors. Bradykinin activation of B2 receptors evoked concentration-dependent (EC50 = 6.0 +/- 0.3 nM) increases in intracellular Ca2+ concentration ([Ca2+]i) in a proportion of dorsal root ganglion neurons in primary culture. These [Ca2+] increases were sensitive to inhibition of phospholipase C (PLC) and depletion of Ca2+ stores. In neurons expressing a green fluorescent protein (GFP)-NFAT4 fusion protein, a 2-min exposure to bradykinin induced the translocation of GFP-NFAT4 from the cytoplasm to the nucleus. Translocation was partially inhibited by the removal of extracellular Ca2+ and was blocked by inhibition of calcineurin. Furthermore, bradykinin triggered a concentration-dependent increase in NFAT-mediated transcription of a luciferase gene reporter (EC50 = 24.2 +/- 0.1 nM). This depended on the B2 receptor, PLC activation, and inositol triphosphate-mediated Ca2+ release. Transcription was not inhibited by capsazepine. Finally, as indicated by quantitative reverse transcription-polymerase chain reaction, bradykinin elicited an increase in cyclooxygenase mRNA. This increase was sensitive to calcineurin and B2 receptor inhibition. These findings suggest a mechanism by which short-lived bradykinin-mediated stimuli can enact lasting changes in nociceptor function and sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Adrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress

Objective(s): Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. M...

متن کامل

The Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats

Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...

متن کامل

Distinct activation properties of the nuclear factor of activated T-cells (NFAT) isoforms NFATc3 and NFATc4 in neurons.

The Ca(2+)/calcineurin-dependent transcription factor NFAT (nuclear factor of activated T-cells) is implicated in regulating dendritic and axonal development, synaptogenesis, and neuronal survival. Despite the increasing appreciation for the importance of NFAT-dependent transcription in the nervous system, the regulation and function of specific NFAT isoforms in neurons are poorly understood. H...

متن کامل

The Effect of Swimming Training on Ganglionic Cells Population and Class III Beta-Tubulin Protein in Dorsal Root Ganglion of Wistar Male Rats: An Experimental Study

  Background and Objectives: β-tubulin protein is the protein that has a key role in plasticity and neurogenesis in the mature neurons. On the other hand, endurance training is effective in neuron life and lifespan. The present study aimed to investigate the effect of 20 days swimming training on class III β-tubulin and the number of ganglion cells in DRG of Wistar male rats. Materials and Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 72 2  شماره 

صفحات  -

تاریخ انتشار 2007