The chemical and microbial degradation of cellulose in the near ®eld of a repository for radioactive wastes
نویسندگان
چکیده
This paper focuses on one aspect of the calculations of risk in performance assessments of the deep disposal of radioactive wastes in the UK, namely the apparent contradiction regarding the representation of microbial activity in performance assessments of the release of gases and of dissolved radionuclides. A discussion is presented of the current understanding of the microbial and chemical degradation of cellulose. The assumptions made in recent performance assessment calculations of the Nirex disposal concept are then stated. For the release of gases, it was assumed that the complete conversion of cellulosic wastes to gases by the action of microbes, was, in principle, permitted. However, concerning migration of radionuclides by the groundwater pathway, all the cellulose was assumed to be converted to complexants that could increase the solubility and decrease the sorption of radionuclides in the near ®eld. This contradiction in the approach of the groundwater and gas pathway assessments stems from the consistent need to provide a cautious approach in the face of uncertainty about the actual evolution of microbial activity in the repository. Therefore, no credit is currently taken for possible bene®cial eects of the microbial destruction of complexants, whereas the complete conversion of cellulose to gaseous products is assumed. # 2000 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal
The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes...
متن کاملAnoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities
One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.013.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (I...
متن کاملProduction of Activated Carbon from Cellulose Wastes
Cellulose wastes of a wood and paper factory were used to produce activated carbon. Several chemical agents under various conditions were used for production of activated carbon and hence their adsorption properties have been evaluated. In addition the effect of process parameters such as raw material, chemical agent concentration, impregnation ratio, carbonization temperature, carbonization ti...
متن کاملUse of Palm Waste Cellulose as a Substitute for Common Growing Media in Aglaonema Growing
In order to evaluate the possibility use of palm waste cellulose as a substitute substrate for growing pot plants, an experiment was conducted in completely randomized block design with 6 replication and six treatments on Aglaonema sp. The treatments were 5 levels including 0, 25, 50, 75 and 100 palm celluloid wastes mixed with different rates of some amendments such as peat, coconut coir, perl...
متن کاملComparison of Essential and Non Essential Amino Acids in the Microbial Protein of Pleurotus Florida from the Lignocellulosic Wastes
Introduction: Cereal straws contain Cellulose, Hemicelluloses and Lignin and are most available renewable biopolymers. White rot fungi is used to convert these wastes into microbial protein. Pleurotus Florida are having the most delignification ability amongst other micro-organisms. We determined the amounts of protein, essential and non essential amino acids of the produced microbial protein f...
متن کامل