Design of a carbonic anhydrase IX active-site mimic to screen inhibitors for possible anticancer properties.

نویسندگان

  • Caroli Genis
  • Katherine H Sippel
  • Nicolette Case
  • Wengang Cao
  • Balendu Sankara Avvaru
  • Lawrence J Tartaglia
  • Lakshmanan Govindasamy
  • Chingkuang Tu
  • Mavis Agbandje-McKenna
  • David N Silverman
  • Charles J Rosser
  • Robert McKenna
چکیده

Recently, a convincing body of evidence has accumulated suggesting that the overexpression of carbonic anhydrase isozyme IX (CA IX) in some cancers contributes to the acidification of the extracellular matrix, which in turn promotes the growth and metastasis of the tumor. These observations have made CA IX an attractive drug target for the selective treatment of certain cancers. Currently, there is no available X-ray crystal structure of CA IX, and this lack of availability has hampered the rational design of selective CA IX inhibitors. In light of these observations and on the basis of structural alignment homology, using the crystal structure of carbonic anhydrase II (CA II) and the sequence of CA IX, a double mutant of CA II with Ala65 replaced by Ser and Asn67 replaced by Gln has been constructed to resemble the active site of CA IX. This CA IX mimic has been characterized kinetically using (18)O-exchange and structurally using X-ray crystallography, alone and in complex with five CA sulfonamide-based inhibitors (acetazolamide, benzolamide, chlorzolamide, ethoxzolamide, and methazolamide), and compared to CA II. This structural information has been evaluated by both inhibition studies and in vitro cytotoxicity assays and shows a correlated structure-activity relationship. Kinetic and structural studies of CA II and CA IX mimic reveal chlorzolamide to be a more potent inhibitor of CA IX, inducing an active-site conformational change upon binding. Additionally, chlorzolamide appears to be cytotoxic to prostate cancer cells. This preliminary study demonstrates that the CA IX mimic may provide a useful model to design more isozyme-specific CA IX inhibitors, which may lead to development of new therapeutic treatments of some cancers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Structure - Activity Relationships Study of Carbonic Anhydrase Inhibitors Using Logistic Regression Model

Binary Logistic Regression (BLR) has been developed as non-linear models to establish quantitative structure- activity relationships (QSAR) between structural descriptors and biochemical activity of carbonic anhydrase inhibitors. Using a training set consisted of 21 compounds with known ki values, the model was trained and tested to solve two-class problems as active or inactive on the basi...

متن کامل

Homology modeling and QSAR analysis of 1,3,4-thiadiazole and 1,3,4-triazole derivatives as carbonic anhydrase inhibitors.

Carbonic anhydrase (CA) inhibitors are very interesting target for designing anticancer (hypoxic) and antiglaucoma drugs. In the present study, a 3D homology modeling of human carbonic anhydrase-IX (hCA-IX) isozyme, based upon the crystal structure of murine CA-XIVA (PDB CODE 1RJ5) was performed, as no experimental 3D structures are available. A homology model of hCA-IX was developed and valida...

متن کامل

Structural Insights into Carbonic Anhydrase IX Isoform Specificity of Carbohydrate-Based Sulfamates

Carbonic anhydrase IX (CA IX) is an extracellular transmembrane homodimeric zinc metalloenzyme that has been validated as a prognostic marker and therapeutic target for several types of aggressive cancers. CA IX shares a close homology with other CA isoforms, making the design of CA IX isoform selective inhibitors challenging. In this paper, we describe the development of a new class of CA IX i...

متن کامل

Potent and Selective Carboxylic Acid Inhibitors of Tumor-Associated Carbonic Anhydrases IX and XII.

Selective inhibition of tumor-associated carbonic anhydrase (CA; EC 4.2.1.1) isoforms IX and XII is a crucial prerequisite to develop successful anticancer therapeutics. Herein, we confirmed the efficacy of the 3-nitrobenzoic acid substructure in the design of potent and selective carboxylic acid derivatives as CAs inhibitors. Compound 10 emerged as the most potent inhibitor of the tumor-associ...

متن کامل

Investigation of solvent effect on the active site energy of Carbonic Anhydrase and Ribonucleotide Reductase

Enzymes catalyze many biological reactions. The rates of chemical reaction in the presence ofenzymes are, in some cases, accelerated more than 10 orders of magnitude relative to thecorresponding rates in solution.In this paper a comparison between optimized structures of two enzyme molecules in aspect ofenergy and dipole moment in different conditions including presence of metallic ion, without...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 48 6  شماره 

صفحات  -

تاریخ انتشار 2009