Geodesics and almost geodesic cycles in random regular graphs

نویسندگان

  • Itai Benjamini
  • Carlos Hoppen
  • Eran Ofek
  • Pawel Pralat
  • Nicholas C. Wormald
چکیده

A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance dG(u, v) is at least dC(u, v) − e(n). Let ω(n) be any function tending to infinity with n. We consider a random d-regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n) = logd−1 logd−1 n + ω(n) and |C| = 2 logd−1 n + O(ω(n)). Along the way, we obtain results on near-geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-geodesic transitive graphs of prime power order

In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be   $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...

متن کامل

Random Regular Graphs are not Asymptotically Gromov Hyperbolic

In this paper we prove that random d–regular graphs with d ≥ 3 have traffic congestion of the order O(n log3d−1(n)) where n is the number of nodes and geodesic routing is used. We also show that these graphs are not asymptotically δ–hyperbolic for any non–negative δ almost surely as n→∞.

متن کامل

Numerical Treatment of Geodesic Differential Equations on Two Dimensional Surfaces

This paper presents a brief instructions to nd geodesics equa-tions on two dimensional surfaces in R3. The resulting geodesic equations are solved numerically using Computer Program Matlab, the geodesics are dis-played through Figures.

متن کامل

Non Hyperbolicity in Random Regular Graphs and their Traffic Characteristics

In this paper we prove that random d–regular graphs with d ≥ 3 have traffic congestion of the order O(n logd−1(n)) where n is the number of nodes and geodesic routing is used. We also show that these graphs are not asymptotically δ–hyperbolic for any non–negative δ almost surely as n→∞.

متن کامل

First passage percolation on a hyperbolic graph admits bi-infinite geodesics*

Given an infinite connected graph, a way to randomly perturb its metric is to assign random i.i.d. lengths to the edges. An open question attributed to Furstenberg ([14]) is whether there exists a bi-infinite geodesic in first passage percolation on the euclidean lattice of dimension at least 2. Although the answer is generally conjectured to be negative, we give a positive answer for graphs sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2011