The Genomic Health of Ancient Hominins.

نویسندگان

  • Ali J Berens
  • Taylor L Cooper
  • Joseph Lachance
چکیده

The genomes of ancient humans, Neandertals, and Denisovans contain many alleles that influence disease risks. Using genotypes at 3,180 disease-associated loci, we estimated the disease burden of 147 ancient genomes. After correcting for missing data, genetic risk scores (GRS) were generated for nine disease categories and the set of all combined diseases. We used these genetic risk scores to examine the effects of different types of subsistence, geography, and sample age on the number of risk alleles in each ancient genome. On a broad scale, hereditary disease risks are similar for ancient hominins and modern-day humans, and the GRS percentiles of ancient individuals span the full range of what is observed in present-day individuals. In addition, there is evidence that ancient pastoralists may have had healthier genomes than hunter-gatherers and agriculturalists. We also observed a temporal trend whereby genomes from the recent past are more likely to be healthier than genomes from the deep past. This calls into question the idea that modern lifestyles have caused genetic load to increase over time. Focusing on individual genomes, we found that the overall genomic health of the Altai Neandertal is worse than 97% of present-day humans and that Ötzi, the Tyrolean Iceman, had a genetic predisposition for gastrointestinal and cardiovascular diseases. As demonstrated by this work, ancient genomes afford us new opportunities to diagnose past human health, which has previously been limited by the quality and completeness of remains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Evolution and Functional Impact of Human Deletion Variants Shared with Archaic Hominin Genomes

Allele sharing between modern and archaic hominin genomes has been variously interpreted to have originated from ancestral genetic structure or through non-African introgression from archaic hominins. However, evolution of polymorphic human deletions that are shared with archaic hominin genomes has yet to be studied. We identified 427 polymorphic human deletions that are shared with archaic hom...

متن کامل

Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins.

Recent comparisons between anatomically modern humans and ancient genomes of other hominins have raised the tantalizing, and hotly debated, possibility of hybridization. Although several tests of hybridization have been devised, they all rely on the degree to which different modern populations share genetic polymorphisms with the ancient genomes of other hominins. However, spatial population st...

متن کامل

Ancient DNA and human history.

We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has ...

متن کامل

Statistical methods for analyzing ancient DNA from hominins.

In the past few years, the number of autosomal DNA sequences from human fossils has grown explosively and numerous partial or complete sequences are available from our closest relatives, Neanderthal and Denisovans. I review commonly used statistical methods applied to these sequences. These methods fall into three broad classes: methods for estimating levels of contamination, descriptive method...

متن کامل

Fast, Accurate and Automatic Ancient Nucleosome and Methylation Maps with epiPALEOMIX

The first epigenomes from archaic hominins (AH) and ancient anatomically modern humans (AMH) have recently been characterized, based, however, on a limited number of samples. The extent to which ancient genome-wide epigenetic landscapes can be reconstructed thus remains contentious. Here, we present epiPALEOMIX, an open-source and user-friendly pipeline that exploits post-mortem DNA degradation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human biology

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2017