Genetic diversity of the allodeterminant alr2 in Hydractinia symbiolongicarpus.

نویسندگان

  • Rafael D Rosengarten
  • Maria A Moreno
  • Fadi G Lakkis
  • Leo W Buss
  • Stephen L Dellaporta
چکیده

Hydractinia symbiolongicarpus, a colonial cnidarian (class Hydrozoa) epibiont on hermit crab shells, is well established as a model for genetic studies of allorecognition. Recently, two linked loci, allorecognition (alr) 1 and alr2, were identified by positional cloning and shown to be major determinants of histocompatibility. Both genes encode putative transmembrane proteins with hypervariable extracellular domains similar to immunoglobulin (Ig)-like domains. We sought to characterize the naturally occurring variation at the alr2 locus and to understand the origins of this molecular diversity. We examined full-length cDNA coding sequences derived from a sample of 21 field-collected colonies, including 18 chosen haphazardly and two laboratory reference strains. Of the 35 alleles recovered from the 18 unbiased samples, 34 encoded unique gene products. We identified two distinct structural classes of alleles that varied over a large central region of the gene but both possessed highly polymorphic extracellular domains I, similar to an Ig-like V-set domain. The discovery of structurally chimeric alleles provided evidence that interallelic recombination may contribute to alr2 variation. Comparisons of the genomic region encompassing alr2 from two field-derived haplotypes and one laboratory reference sequence revealed a history of structural variation at the haplotype level as well. Maintenance of large numbers of equally rare alleles in a natural population is a hallmark of negative frequency-dependent selection and is expected to produce high levels of heterozygosity. The observed alr2 allelic diversity is comparable with that found in immune recognition molecules such as human leukocyte antigens, B cell Igs, or natural killer cell Ig-like receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary genetics of the hydroid allodeterminant alr2.

We surveyed genetic variation in alr2, an allodeterminant of the colonial hydroid Hydractinia symbiolongicarpus. We generated cDNA from a sample of 239 Hydractinia colonies collected at Lighthouse Point, Connecticut, and identified 473 alr2 alleles, 198 of which were unique. Rarefaction analysis suggested that the sample was near saturation. Most alleles were rare, with 86% occurring at frequen...

متن کامل

Differential effect of allorecognition loci on phenotype in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa).

The allorecognition complex of Hydractinia symbiolongicarpus is a chromosomal interval containing two loci, alr1 and alr2, that controls fusion between genetically distinct colonies. Recombination between these two loci has been associated with a heterogeneous class of phenotypes called transitory fusion. A large-scale backcross was performed to generate a population of colonies (N = 106) with ...

متن کامل

A Hypervariable Invertebrate Allodeterminant

Colonial marine invertebrates, such as sponges, corals, bryozoans, and ascidians, often live in densely populated communities where they encounter other members of their species as they grow over their substratum. Such encounters typically lead to a natural histocompatibility response in which colonies either fuse to become a single, chimeric colony or reject and aggressively compete for space....

متن کامل

Hydractinia Allodeterminant alr1 Resides in an Immunoglobulin Superfamily-like Gene Complex

Allorecognition, the ability to discriminate between self and nonself, is ubiquitous among colonial metazoans and widespread among aclonal taxa. Genetic models for the study of allorecognition have been developed in the jawed vertebrates, invertebrate chordate Botryllus, and cnidarian Hydractinia. In Botryllus, two genes contribute to the histocompatibility response, FuHC and fester. In the cni...

متن کامل

Allorecognition Proteins in an Invertebrate Exhibit Homophilic Interactions

Sessile colonial invertebrates-animals such as sponges, corals, bryozoans, and ascidians-can distinguish between their own tissues and those of conspecifics upon contact [1]. This ability, called allorecognition, mediates spatial competition and can prevent stem cell parasitism by ensuring that colonies only fuse with self or close kin. In every taxon studied to date, allorecognition is control...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 28 2  شماره 

صفحات  -

تاریخ انتشار 2011