Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells
نویسندگان
چکیده
Zinc oxide nanoparticles (ZnO-NP) are widely spread in consumer products. Data about the toxicological characteristics of ZnO-NP is still under controversial discussion. The human skin is the most important organ concerning ZnO-NP exposure. Intact skin was demonstrated to be a sufficient barrier against NPs; however, defect skin may allow NP contact to proliferating cells. Within these cells, stem cells are the most important toxicological target for NPs. The aim of this study was to evaluate the genotoxic and cytotoxic effects of ZnO-NP at low-dose concentrations after long-term and repetitive exposure to human mesenchymal stem cells (hMSC). Cytotoxic effects of ZnO-NP were measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Furthermore, genotoxicity was evaluated by the comet assay. For long-term observation over 6 weeks, transmission electron microscopy (TEM) was applied. The results of the study indicated cytotoxic effects of ZnO-NP beginning at high concentrations of 50 μg/mL and genotoxic effects in hMSC exposed to 1 and 10 μg/mL ZnO-NP. Repetitive exposure enhanced cyto- but not genotoxicity. Intracellular NP accumulation was observed up to 6 weeks. The results suggest cytotoxic and genotoxic potential of ZnO-NP. Even low doses of ZnO-NP may induce toxic effects as a result of repetitive exposure and long-term cellular accumulation. This data should be considered before using ZnO-NP on damaged skin.
منابع مشابه
The effect of different concentrations of iron oxide nanoparticles on the expression of p53 gene in human amniotic membrane-derived mesenchymal stem cells
Superparamagnetic iron oxide nanoparticles (SPIONs) have made extensive advances in nanotechnology. The unique properties of these particles have expanded their application in various fields, including medicine. One of these applications is non-invasive analysis for cell tracking. However, the possibility of toxicity in cells is reported by these nanoparticles. Due to the fact that cellular dam...
متن کاملThe Effects of Iron Oxide Nanoparticle on Differentiation of Human Mesenchymal Stem Cells to Osteoblast
Introduction: IIron oxide nanoparticles (IO NP) have an increasing number of biomedical applications. To date, the potential cytotoxicity of these particles remains an issue of debate. Little is known about the cellular interaction or toxic effects of IO NP on differentiation of stem cells. The aim of the present study was to investigate the possible toxic role of different doses of IO NP in di...
متن کاملInfluence of Copper Oxide Nanoparticle on Hematology and Plasma Biochemistry of Caspian Trout (Salmo trutta caspius), Following Acute and Chronic Exposure
The Caspian trout is an endangered and quite vulnerable fish, considered for a natural protection program in the southern area of the Caspian Sea. Copper oxide nanoparticles (CuO-NPs) are toxic substances, which induce oxidative stress, not to mention other pathophysiological states. The toxicity of nanoparticles on fish needs more characterization for short- and long-term effects. Thus, the p...
متن کاملInfluence of Copper Oxide Nanoparticle on Hematology and Plasma Biochemistry of Caspian Trout (Salmo trutta caspius), Following Acute and Chronic Exposure
The Caspian trout is an endangered and quite vulnerable fish, considered for a natural protection program in the southern area of the Caspian Sea. Copper oxide nanoparticles (CuO-NPs) are toxic substances, which induce oxidative stress, not to mention other pathophysiological states. The toxicity of nanoparticles on fish needs more characterization for short- and long-term effects. Thus, the p...
متن کاملInduction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles
The widespread use of zinc oxide (ZnO) nanoparticles worldwide exposes humans to their adverse effects, so it is important to understand their biological effects and any associated risks. This study was designed to investigate the cytotoxicity, oxidative stress, and apoptosis caused by ZnO nanoparticles in human skin melanoma (A375) cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoli...
متن کامل