Breast Cancer Detection with Gabor Features from Digital Mammograms

نویسنده

  • Yufeng Zheng
چکیده

A new breast cancer detection algorithm, named the ―Gabor Cancer Detection‖ (GCD) algorithm, utilizing Gabor features is proposed. Three major steps are involved in the GCD algorithm, preprocessing, segmentation (generating alarm segments), and classification (reducing false alarms). In preprocessing, a digital mammogram is down-sampled, quantized, denoised and enhanced. Nonlinear diffusion is used for noise suppression. In segmentation, a band-pass filter is formed by rotating a 1-D Gaussian filter (off center) in frequency space, termed as ―Circular Gaussian Filter‖ (CGF). A CGF can be uniquely characterized by specifying a central frequency and a frequency band. A mass or calcification is a space-occupying lesion and usually appears as a bright region on a mammogram. The alarm segments (suspicious to be masses/calcifications) can be extracted out using a threshold that is adaptively decided upon the histogram analysis of the CGF-filtered mammogram. In classification, a Gabor filter bank is formed with five bands by four orientations (horizontal, vertical, 45 and 135 degree) in Fourier frequency domain. For each mammographic image, twenty Gabor-filtered images are produced. A set of edge histogram descriptors (EHD) are then extracted from 20 Gabor images for classification. An EHD signature is computed with four orientations of Gabor images along each band and five EHD signatures are then joined together to form an EHD feature vector of 20 dimensions. With the EHD features, the fuzzy C-means clustering technique and k-nearest neighbor (KNN) classifier are used to reduce the number of false alarms. The experimental results tested on the DDSM database (University of South Florida) show the promises of GCD algorithm in breast cancer detection, which achieved TP (true positive rate) = 90% at FPI (false positives per image) = 1.21 in mass detection; and TP = 93% at FPI = 1.19 in calcification detection. OPEN ACCESS Algorithms 2010, 3 45

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Mammogram for Detection of Breast Cancer Using Wavelet Statistical Features

Early detection of breast cancer increases the survival rate and increases the treatment options. One of the most powerful techniques for early detection of breast cancer is based on digital mammogram. A system can be developed for assisting the analysis of digital mammograms using log-Gabor wavelet statistical features. The proposed system involves three major steps called Pre-processing, Proc...

متن کامل

Mammographic mass classification using Gabor Wavelet based features of circular scan lines

Breast cancer develops from breast tissue. This cancer is reported as the second most deadly cancer in the world and the most common cancer in most cities as well as in rural areas of India. Early detection can play an effective role in prevention and cure. At present the most reliable detection technology is digital mammography. At the early stages of breast cancer, it is very difficult to det...

متن کامل

Image Analysis and Understanding Techniques for Breast Cancer Detection from Digital Mammograms

In this chapter, an overview of recent developments in image analysis and understanding techniques for automated detection of breast cancer from digital mammograms is presented. The various steps in the design of an automated system (i.e. Computer Aided Detection [CADe] and Computer Aided Diagnostics (CADx)] include preparation of image database for classification, image pre-processing, mammogr...

متن کامل

Mass Detection in Digital Mammograms Using Gabor Filter Bank

Digital Mammograms are currently the most effective imaging modality for early detection of breast cancer but the number of false negatives and false positives is high. Mass is one type of breast lesion and the detection of masses is highly challenged problem. Almost all methods that have been proposed so far suffer from high number of false positives and false negatives. In this paper, a metho...

متن کامل

Contrast Enhancement of Mammograms for Rapid Detection of Microcalcification Clusters

Introduction Breast cancer is one of the most common types of cancer among women.  Early detection of breast cancer is the key to reducing the associated mortality rate. The presence of microcalcifications clusters (MCCs) is one of the earliest signs of breast cancer. Due to poor imaging contrast of mammograms and noise contamination, radiologists may overlook some diagnostic signs, specially t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithms

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010