Structure-based discovery of two antiviral inhibitors targeting the NS3 helicase of Japanese encephalitis virus
نویسندگان
چکیده
Japanese encephalitis virus (JEV) is a flavivirus that threatens more than half of the world's population. Vaccination can prevent the disease, but no specific antiviral drug is yet available for clinical therapy, and the death rate caused by JEV can reach as high as 60%. The C-terminus of non-structural protein 3 (NS3) of flavivirus encodes helicase and has been identified as a potential drug target. In this study, high throughput molecular docking was employed to identify candidate JEV NS3 helicase inhibitors in a commercial library containing 250,000 compounds. Forty-one compounds were then tested for their ability to inhibit NS3 activity. Two compounds inhibited unwinding activity strongly but had no effect on the ATPase activity of the protein. Western blots, IFA, and plaque reduction assays demonstrated that both compounds inhibited the virus in cell culture. The EC50s of the two compounds were 25.67 and 23.50 μM, respectively. Using simulated docking, the two compounds were shown to bind and block the NS3 RNA unwinding channel, consistent with the results of the enzyme inhibition tests. The atoms participating in intramolecular interaction were identified to facilitate future compound optimization.
منابع مشابه
Identification and characterization of the RNA helicase activity of Japanese encephalitis virus NS3 protein.
The NS3 protein of Japanese encephalitis virus (JEV) contains motifs typical of RNA helicase/NTPase but no RNA helicase activity has been reported for this protein. To identify and characterize the RNA helicase activity of JEV NS3, a truncated form of the protein with a His-tag was expressed in Escherichia coli and purified. The purified JEV NS3 protein showed an RNA helicase activity, which wa...
متن کاملStructural models for the design of novel antiviral agents against Greek Goat Encephalitis
The Greek Goat Encephalitis virus (GGE) belongs to the Flaviviridae family of the genus Flavivirus. The GGE virus constitutes an important pathogen of livestock that infects the goat's central nervous system. The viral enzymes of GGE, helicase and RNA-dependent RNA polymerase (RdRP), are ideal targets for inhibitor design, since those enzymes are crucial for the virus' survival, proliferation a...
متن کاملDiscovery of hepatitis C virus NS3 helicase inhibitors by a multiplexed, high-throughput helicase activity assay based on graphene oxide.
Worldwide, over 170 million people have hepatitis C virus (HCV) infections. Chronic infection with HCV leads to liver diseases such as cirrhosis and hepatocarcinoma and is the major reason of liver transplantation. Currently, the standard treatment for hepatitis C relies on a combination of interferon-a and ribavirin (an immune booster and a general inhibitor of virus replication, respectively)...
متن کاملIvermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug.
OBJECTIVES Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgen...
متن کاملCloning and expression of NS3 helicase fragment of hepatitis C virus and the study of its immunoreactivity in HCV infected patients
Objective(s): Hepatitis C is a major cause of liver failure worldwide. Current therapies applied for this disease are not fully effective and produce side effects in most cases. Non-structural protein 3 helicase (NS3) of HCV is one of the key enzymes in viral replication and infection. Therefore, this region is a promising target to design new drugs and therapies against HCV infection. The aim ...
متن کامل