Arithmetic of Large Integers

ثبت نشده
چکیده

Out[27]= 5 732 633 648 444 029 959 171 112 534 135 601 537 904 527 274 424 900 382 532 001 737 941 474 619 400 523 520 462 230 330 041Ö 125 536 677 017 734 855 696 154 228 338 013 057 234 856 311 747 239 817 067 594 543 153 099 451 342 467 908 368 438 222 191Ö 627 068 172 197 302 715 770 028 566 855 392 342 976 305 724 205 594 772 269 515 365 592 152 841 739 667 322 895 223 024 545Ö 931 314 017 916 679 691 952 991 750 781 258 479 158 612 316 266 439 307 568 075 105 060 765 650 029 143 393 773 806 384 838Ö 054 113 900 232 630 543 768 575 297 229 123 646 861 592 821 903 714 826 429 093 696 306 882 866 700 765 055 250 127 946 457Ö 077 010 917 766 830 868 844 501 764 009 407 577 366 542 471 612 721 987 372 263 059 710 647 889 656 277 818 552 220 083 011Ö 012 443 819 051 093 799 152 622 228 227 468 804 965 725 237 086 229 146 631 197 646 069 067 216 158 731 032 894 437 169 807Ö 273 359 707 925 736 247 280 428 972 993 013 756 656 621 288 493 097 888 202 673 076 506 482 522 570 230 411 143 623 083 375Ö 689 967 072 678 198 299 241 685 431 292 981 759 540 833 694 545 655 684 578 302 520 267 074 775 206 768 184 557 835 920 808Ö 565 506 538 948 737 045 985 068 313 874 334 285 231 391 055 943 208 282 058 486 335 256 284 460 460 169 312 093 906 675 913Ö 434 377 163 339 887 396 227 651 392 427 613 751 940 796 098 619 138 230 445 298 163 341 764

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

(i) Additive Arithmetic Functions Bounded by Monotone Functions on Thin Sets

1 . An arithmetic function f(n) is said to be additive if it satisfies the relation f(ob) = f(a)+f(b) for every pair of coprime positive integers a, b . In this paper we establish two results to the effect that an additive function which is not too large on many integers cannot often be large on the primes . If a l <a,< . . . is a sequence of positive integers, let A(x) denote ttie number of su...

متن کامل

On the Set of Common Differences in van der Waerden’s Theorem on Arithmetic Progressions

Analogues of van der Waerden’s theorem on arithmetic progressions are considered where the family of all arithmetic progressions, AP, is replaced by some subfamily of AP. Specifically, we want to know for which sets A, of positive integers, the following statement holds: for all positive integers r and k, there exists a positive integer n = w ′(k, r) such that for every r-coloring of [1, n] the...

متن کامل

Simultaneous Modular Reduction and Kronecker Substitution for Small Finite Fields

We present algorithms to perform modular polynomial multiplication or modular dot product efficiently in a single machine word. We pack polynomials into integers and perform several modular operations with machine integer or floating point arithmetic. The modular polynomials are converted into integers using Kronecker substitution (evaluation at a sufficiently large integer). With some control ...

متن کامل

The Minimal Number of Three-Term Arithmetic Progressions Modulo a Prime Converges to a Limit

How few three-term arithmetic progressions can a subset S ⊆ ZN := Z/NZ have if |S| ≥ υN? (that is, S has density at least υ). Varnavides [4] showed that this number of arithmetic-progressions is at least c(υ)N for sufficiently large integers N ; and, it is well-known that determining good lower bounds for c(υ) > 0 is at the same level of depth as Erdös’s famous conjecture about whether a subset...

متن کامل

Forbidden arithmetic progressions in permutations of subsets of the integers

Permutations of the positive integers avoiding arithmetic progressions of length 5 were constructed in (Davis et al, 1977), implying the existence of permutations of the integers avoiding arithmetic progressions of length 7. We construct a permutation of the integers avoiding arithmetic progressions of length 6. We also prove a lower bound of 1 2 on the lower density of subsets of positive inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010