Multiple determinants within iron-responsive elements dictate iron regulatory protein binding and regulatory hierarchy.

نویسندگان

  • Jeremy B Goforth
  • Sheila A Anderson
  • Christopher P Nizzi
  • Richard S Eisenstein
چکیده

Iron regulatory proteins (IRPs) are iron-regulated RNA binding proteins that, along with iron-responsive elements (IREs), control the translation of a diverse set of mRNA with 5' IRE. Dysregulation of IRP action causes disease with etiology that may reflect differential control of IRE-containing mRNA. IREs are defined by a conserved stem-loop structure including a midstem bulge at C8 and a terminal CAGUGH sequence that forms an AGU pseudo-triloop and N19 bulge. C8 and the pseudo-triloop nucleotides make the majority of the 22 identified bonds with IRP1. We show that IRP1 binds 5' IREs in a hierarchy extending over a ninefold range of affinities that encompasses changes in IRE binding affinity observed with human L-ferritin IRE mutants. The limits of this IRE binding hierarchy are predicted to arise due to small differences in binding energy (e.g., equivalent to one H-bond). We demonstrate that multiple regions of the IRE stem not predicted to contact IRP1 help establish the binding hierarchy with the sequence and structure of the C8 region displaying a major role. In contrast, base-pairing and stacking in the upper stem region proximal to the terminal loop had a minor role. Unexpectedly, an N20 bulge compensated for the lack of an N19 bulge, suggesting the existence of novel IREs. Taken together, we suggest that a regulatory binding hierarchy is established through the impact of the IRE stem on the strength, not the number, of bonds between C8 or pseudo-triloop nucleotides and IRP1 or through their impact on an induced fit mechanism of binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple, conserved iron-responsive elements in the 3'-untranslated region of transferrin receptor mRNA enhance binding of iron regulatory protein 2.

Synthesis of proteins for iron homeostasis is regulated by specific, combinatorial mRNA/protein interactions between RNA stem-loop structures (iron-responsive elements, IREs) and iron-regulatory proteins (IRP1 and IRP2), controlling either mRNA translation or stability. The transferrin receptor 3'-untranslated region (TfR-3'-UTR) mRNA is unique in having five IREs, linked by AU-rich elements. A...

متن کامل

Iron-regulatory proteins, iron-responsive elements and ferritin mRNA translation.

Iron plays a central role in the metabolism of all cells. This is evident by its major contribution to many diverse functions, such as DNA replication, bacterial pathogenicity, photosynthesis, oxidative stress control and cell proliferation. In mammalian systems, control of intracellular iron homeostasis is largely due to posttranscriptional regulation of binding by iron-regulatory RNA-binding ...

متن کامل

Tempol-mediated activation of latent iron regulatory protein activity prevents symptoms of neurodegenerative disease in IRP2 knockout mice.

In mammals, two homologous cytosolic regulatory proteins, iron regulatory protein 1 (also known as IRP1 and Aco1) and iron regulatory protein 2 (also known as IRP2 and Ireb2), sense cytosolic iron levels and posttranscriptionally regulate iron metabolism genes, including transferrin receptor 1 (TfR1) and ferritin H and L subunits, by binding to iron-responsive elements (IREs) within target tran...

متن کامل

Optimal sequence and structure of iron-responsive elements. Selection of RNA stem-loops with high affinity for iron regulatory factor.

Iron regulatory factor (IRF) is a cytoplasmic mRNA-binding protein with specificity for iron-responsive element (IRE) RNA stem-loops. IRF post-transcriptionally regulates intracellular iron levels via binding to IREs in the untranslated regions of ferritin, transferrin receptor, and erythroid 5-aminolevulinic-acid synthase mRNAs. Specific IRE nucleotides are phylogenetically conserved: those of...

متن کامل

Iron regulatory protein 2 as iron sensor. Iron-dependent oxidative modification of cysteine.

Iron regulatory protein 2 coordinates cellular regulation of iron metabolism by binding to iron responsive elements in mRNA. The protein is synthesized constitutively but is rapidly degraded when iron stores are replete. This iron-dependent degradation requires the presence of a 73-residue degradation domain, but its functions have not yet been established. We now show that the domain can act a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2010