High aspect ratio titanium nitride trench structures as plasmonic biosensor

نویسندگان

  • E. SHKONDIN
  • T. REPÄN
  • O. TAKAYAMA
  • A. V. LAVRINENKO
چکیده

High aspect ratio titanium nitride (TiN) grating structures are fabricated by the combination of deep reactive ion etching (DRIE) and atomic layer deposition (ALD) techniques. TiN is deposited at 500 ◦C on a silicon trench template. Silicon between vertical TiN layers is selectively etched to fabricate the high aspect ratio TiN trenches with the pitch of 400 nm and height of around 2.7 μm. Dielectric functions of TiN films with different thicknesses of 18 105 nm and post-annealing temperatures of 700 900 ◦C are characterized by an ellipsometer. We found that the highest annealing temperature of 900 ◦C gives the most pronounced plasmonic behavior with the highest plasma frequency, ωp = 2.53 eV (λp = 490 nm). Such high aspect ratio trench structures function as a plasmonic grating sensor that supports the Rayleigh-Woods anomalies (RWAs), enabling the measurement of changes in the refractive index of the ambient medium in the wavelength range of 600 900 nm. We achieved the bulk refractive index sensitivity (BRIS) of approximately 430 nm/RIU relevant to biosensing liquids. © 2017 Optical Society of America OCIS codes: (050.1950) Diffraction gratings; (250.5403) Plasmonics; (160.4760) Optical properties; (240.0310) Thin films; (220.4241) Nanostructure fabrication. References and links 1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). 2. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1(10), 573–576 (2007). 3. S. P. Burgos, Ho W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and characterization of plasmonic resonant guided wave networks,” Nano Lett. 14(6), 3284–3292 (2014). 4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(10), 205–213 (2010). 5. A. Aubry, D. Y. Lei, A. I. Fernández-Domónguez, Y. Sonnefraud, S. A. Maier and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010). 6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors Actuators B Chem. 54, 3–15 (1999). 7. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B 54, 16–24 (1999). 8. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008). 9. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). 10. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). 11. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photon. 6(11), 709–713 (2012). 12. C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29, 5638–5649 (2013). 13. S. Savoia, A. Ricciardi, A. Crescitelli, C. Granata, E. Esposito, V. Galdi, and A. Cusano, “Surface sensitivity of Rayleigh anomalies inmetallic nanogratings,” Opt. Express 21(20), 23531–23542 (2013). 14. M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing,” ACS Photonics 2, 615–621 (2015). 15. B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proceedings of the IEEE 23(12), 2380–2408 (2016). 16. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016). Vol. 7, No. 11 | 1 Nov 2017 | OPTICAL MATERIALS EXPRESS 4171 #305449 https://doi.org/10.1364/OME.7.004171 Journal © 2017 Received 23 Aug 2017; revised 25 Oct 2017; accepted 25 Oct 2017; published 31 Oct 2017 17. H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46, 366–388 (2017). 18. H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance,” Surf. and Coat.Technol. 63(1-2), 1–13 (1994) 19. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010). 20. G. V. Naik, J. L. Schroeder, X.Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4) 478–489 (2012). 21. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013). 22. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014). 23. A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014). 24. Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015). 25. S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V. M. Shalaev, U. B. Wiesner, C. E. Bonner, R. Hussain, N. Noginova, and M. A. Noginov, “Gyroidal titanium nitride as nonmetallic metamaterial,” Opt. Mater. Express 5(6), 1316–1322 (2015). 26. L. Berthod, V. Gǎtè,M. Bichotte, M. Langlet, f. Vocanson, C. Jimenez, d. Jamon, I. Verrier, C. Veillas, O. Parriaux, and Y. Jourlin, “Direct fabrication of metal-like TiN-based plasmonic grating using nitridation of a photopatternable TiO2 sol-gel film," Opt. Mater. Express 6(8) 2508–2520 (2016) 27. U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017). 28. I.-S. Yu, H.-E. Cheng, C.-C. Chang, Y.-W. Lin, H.-T. Chen, Y.-C. Wang, and Z.-P. Yang, “Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films,” Opt. Mater. Express7(3), 777–784 (2017). 29. L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467 30. S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010). 31. D. R. G. Mitchell, D. J. Attard, K. S. Finnie, G. Triani, C. J. Barbe, C. Depagne and J. R. Bartlett, “TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition,” Appl. Surf. Sci. 243(1-4), 265–277 (2005). 32. S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, “Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers,” Phys. Rev. Lett. 115(17), 177402 (2015). 33. E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016). 34. C. T. Riley, J. S. T. Samallet, J. R. J. Brodie, Y. Fainman, D. J. Sirbuly and Z. Liu, “Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles,” PNAS 114(6) 1264–1268 (2017). 35. C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016). 36. E. Shkondin, O. Takayama, M. E. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017). 37. O. Takayama, E. Shkondin, A. Bodganov, M. E. A. Panah, K. Golenitskii, P. Dmitriev, T. Repán, R. Malureanu, P. Belov, F. Jensen, and A. V. Lavrinenko, “Mid-infrared directional surface waves on a high aspect ratio nano-trench platform,” https://arxiv.org/abs/1704.06108. 38. P. Parsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8 3128–3154 (2015) 39. C. J. Choi, Y. S. Seol, and K. Baik, “TiN etching and its effects on tungsten etching in SF6/Ar helicon plasma,” Jpn. J. Appl. Phys. 37, 801–806 (1998) 40. M. Darnon, T. Chevolleau, D. Eon, L. Vallier, J. Torres, and O. Joubert, “Etching characteristics of TiN used as hard mask in dielectric etch process„” J. Vac. Sci. Technol. B 24(5) 2262–2270 (2006) 41. J. Woo, C. Choi, Y. Joo, H. Kim, and C. Kim, “The dry etching of TiN thin films using inductively coupled CF4/Ar plasma,” Trans. Electr. Electron. Mater. 14(2) 67–70 (2013) 42. J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Technol. B 21(5) 2163–2168 (2003). Vol. 7, No. 11 | 1 Nov 2017 | OPTICAL MATERIALS EXPRESS 4172

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials.

We propose several planar layouts of ultra-compact plasmonic modulators that utilize alternative plasmonic materials such as transparent conducting oxides and titanium nitride. The modulation is achieved by tuning the carrier concentration in a transparent conducting oxide layer into and out of the plasmon resonance with an applied electric field. The resonance significantly increases the absor...

متن کامل

Optical Properties and Plasmonic Performance of Titanium Nitride

Titanium nitride (TiN) is one of the most well-established engineering materials nowadays. TiN can overcome most of the drawbacks of palsmonic metals due to its high electron conductivity and mobility, high melting point and due to the compatibility of its growth with Complementary Metal Oxide Semiconductor (CMOS) technology. In this work, we review the dielectric function spectra of TiN and we...

متن کامل

Silicon Nitride Waveguides for Plasmon Optical Trapping and Sensing Applications

We demonstrate a silicon nitride trench waveguide deposited with bowtie antennas for plasmonic enhanced optical trapping. The sub-micron silicon nitride trench waveguides were fabricated with conventional optical lithography in a low cost manner. The waveguides embrace not only low propagation loss and high nonlinearity, but also the inborn merits of combining micro-fluidic channel and waveguid...

متن کامل

Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles.

Titanium nitride is considered a promising alternative plasmonic material and is known to exhibit localized surface plasmon resonances within the near-infrared biological transparency window. Here, local heating efficiencies of disk-shaped nanoparticles made of titanium nitride and gold are compared in the visible and near-infrared regions numerically and experimentally with samples fabricated ...

متن کامل

Tunable, high aspect ratio pillars on diverse substrates using copolymer micelle lithography: an interesting platform for applications.

We demonstrate the use of copolymer micelle lithography using polystyrene-block-poly(2-vinylpyridine) reverse micelle thin films in their as-coated form to create nanopillars with tunable dimensions and spacing, on different substrates such as silicon, silicon oxide, silicon nitride and quartz. The promise of the approach as a versatile application oriented platform is highlighted by demonstrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017