Jets of Singular Foliations

نویسنده

  • EDUARDO ESTEVES
چکیده

Given a singular foliation satisfying locally everywhere the Frobenius condition, even at the singularities, we show how to construct its global sheaves of jets. Our construction is purely formal, and thus applicable in a variety of contexts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Holomorphic Foliations with Split Tangent Sheaf

We show that the set of singular holomorphic foliations on projective spaces with split tangent sheaf and good singular set is open in the space of holomorphic foliations. We also give a cohomological criterion for the rigidity of holomorphic foliations induced by group actions and prove the existence of rigid codimension one foliations of degree n − 1 on P for every n ≥ 3.

متن کامل

A Dimensionless Parameter Approach based on Singular Value Decomposition and Evolutionary Algorithm for Prediction of Carbamazepine Particles Size

The particle size control of drug is one of the most important factors affecting the efficiency of the nano-drug production in confined liquid impinging jets. In the present research, for this investigation the confined liquid impinging jet was used to produce nanoparticles of Carbamazepine. The effects of several parameters such as concentration, solution and anti-solvent flow rate and solvent...

متن کامل

Volume-minimizing Foliations on Spheres

The volume of a k-dimensional foliation F in a Riemannian manifold Mn is defined as the mass of image of the Gauss map, which is a map from M to the Grassmann bundle of k-planes in the tangent bundle. Generalizing the construction by Gluck and Ziller in [4], “singular” foliations by 3-spheres are constructed on round spheres S, as well as a singular foliation by 7-spheres on S, which minimize v...

متن کامل

Stability of Foliations Induced by Rational Maps

We show that the singular holomorphic foliations induced by dominant quasi-homogeneous rational maps fill out irreducible components of the space Fq(r, d) of singular foliations of codimension q and degree d on the complex projective space P , when 1 ≤ q ≤ r − 2. We study the geometry of these irreducible components. In particular we prove that they are all rational varieties and we compute the...

متن کامل

Rigidity of Certain Holomorphic Foliations

There is a well-known rigidity theorem of Y. Ilyashenko for (singular) holomorphic foliations in CP and also the extension given by Gómez-Mont and Ort́ız-Bobadilla (1989). Here we present a different generalization of the result of Ilyashenko: some cohomological and (generic) dynamical conditions on a foliation F on a fibred complex surface imply the d-rigidity of F , i.e. any topologically triv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006