N-terminal sequence and distal histidine residues are responsible for pH-regulated cytoplasmic membrane binding of human AMP deaminase isoform E.
نویسندگان
چکیده
Mammalian AMP deaminase 3 (AMPD3) enzymes reportedly bind to intracellular membranes, plasma lipid vesicles, and artificial lipid bilayers with associated alterations in enzyme conformation and function. However, proteolytic sensitivity of AMPD polypeptides makes it likely that prior studies were performed with N-truncated enzymes. This study uses erythrocyte ghosts to characterize the reversible cytoplasmic membrane association of human full-sized recombinant isoform E (AMPD3). Membrane-bound isoform E exhibits diminished catalytic activity whereas low micromolar concentrations of the cationic antibiotic, neomycin, disrupt this protein-lipid interaction and relieve catalytic inhibition. The cytoplasmic membrane association of isoform E also displays an inverse correlation with pH in the physiological range. Diethyl pyrocarbonate (DEPC) modification of isoform E nearly abolishes its cytoplasmic membrane binding capacity, and this effect can be reversed by hydroxylamine. Difference spectra reveal that 18 of 29 histidine residues in each isoform E subunit are N-carbethoxylated by DEPC. These combined data demonstrate that protonated imidazole rings of histidine residues mediate a pH-responsive association of isoform E with anionic charges on the surface of the cytoplasmic membrane, possibly phosphatidylinositol 4,5-bisphosphate, a pure noncompetitive inhibitor of the enzyme. Finally, AMPD1 and a series of N-truncated AMPD3 enzymes are used to show that these behaviors are specific to isoform E and require up to 48 N-terminal amino acids, even though this stretch of sequence contains no histidine residues. The pH-responsive cytosol-membrane partitioning of isoform E may be an important mechanism for branch point regulation of adenylate catabolism.
منابع مشابه
Novel aspects of tetramer assembly and N-terminal domain structure and function are revealed by recombinant expression of human AMP deaminase isoforms.
AMP deaminase isoforms purified from endogenous sources display smaller than predicted subunit molecular masses, whereas baculoviral expression of human AMPD1 (isoform M) and AMPD3 (isoform E) cDNAs produces full-sized recombinant enzymes. However, nearly 100 N-terminal amino acid residues are cleaved from each recombinant polypeptide during storage at 4 degreesC. Expression of N-truncated cDNA...
متن کاملRegulation of skeletal-muscle AMP deaminase: involvement of histidine residues in the pH-dependent inhibition of the rabbit enzyme by ATP.
Reaction of rabbit skeletal-muscle AMP deaminase with a low molar excess of diethyl pyrocarbonate results in conversion of the enzyme into a species with one or two carbethoxylated histidine residues per subunit that retains sensitivity to ATP at pH 7.1 but, unlike the native enzyme, it is not sensitive to regulation by ATP at pH 6.5. This effect mimics that exerted on the enzyme by limited pro...
متن کاملFunctional role of polar amino acid residues in Na+/H+ exchangers.
Na(+)/H(+) exchangers are a family of ubiquitous membrane proteins. In higher eukaryotes they regulate cytosolic pH by removing an intracellular H(+) in exchange for an extracellular Na(+). In yeast and Escherichia coli, Na(+)/H(+) exchangers function in the opposite direction to remove intracellular Na(+) in exchange for extracellular H(+). Na(+)/H(+) exchangers display an internal pH-sensitiv...
متن کاملOptimized Cytoplasmic Expression of Water Soluble Human Thrombopoietin in Modified Bacterial Strain
Background: Thrombopoietin is a glycoprotein produced by liver and kidney which is responsible for regulating the platelet production. Thrombopoietin is a key ligand with impact on regulating the self-renewal of Hematopoietic stem cells and the regulation of Megakaryocytes progenitors. Previous studies have indicated that only N-terminal domain of this protein has receptor promoting ability. Th...
متن کاملRegulation of rat AMP deaminase 3 (isoform C) by development and skeletal muscle fibre type.
AMP deaminase (AMPD) is characterized by a multigene family in rodents and man. Highly conserved rat and human AMPD1 and AMPD2 genes produce protein products that exhibit cross-species immunoreactivities (AMPD1, rat isoform A and human isoform M; AMPD2, rat isoform B and human isoform L). A third gene, AMPD3, has been described in humans, but antisera raised against its purified protein product...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 45 شماره
صفحات -
تاریخ انتشار 2002