Game coloring the Cartesian product of graphs

نویسنده

  • Xuding Zhu
چکیده

This article proves the following result: Let G and G′ be graphs of orders n and n′, respectively. Let G∗ be obtained from G by adding to each vertex a set of n′ degree 1 neighbors. If G∗ has game coloring number m and G′ has acyclic chromatic number k, then the Cartesian product G G′ has game chromatic number at most k(k+m − 1). As a consequence, the Cartesian product of two forests has game chromatic number at most 10, and the Cartesian product of two planar graphs has game chromatic number at most 105. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 261–278, 2008

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Game Chromatic Number of Cartesian Product Graphs

The game chromatic number χg is considered for the Cartesian product G 2 H of two graphs G and H. We determine exact values of χg(G2H) when G and H belong to certain classes of graphs, and show that, in general, the game chromatic number χg(G2H) is not bounded from above by a function of game chromatic numbers of graphs G and H. An analogous result is proved for the game coloring number colg(G2...

متن کامل

The Game Chromatic Number of Some Families of Cartesian Product Graphs

We find exact values for the game chromatic number of the Cartesian product graphs Sm¤Pn, Sm¤Cn, P2¤Wn, and P2¤Km,n. This extends previous results of Bartnicki et al. on the game chromatic number of Cartesian product graphs.

متن کامل

Equitable Colorings of Cartesian Product Graphs of Wheels with Complete Bipartite Graphs

By the sorting method of vertices, the equitable chromatic number and the equitable chromatic threshold of the Cartesian products of wheels with bipartite graphs are obtained. Key–Words: Cartesian product, Equitable coloring, Equitable chromatic number, Equitable chromatic threshold

متن کامل

The reliability Wiener number of cartesian product graphs

Reliability Wiener number is a modification of the original Wiener number in which probabilities are assigned to edges yielding a natural model in which there are some (or all) bonds in the molecule that are not static. Various probabilities naturally allow modelling different types of chemical bonds because chemical bonds are of different types and it is well-known that under certain condition...

متن کامل

Adjacent Vertex Distinguishing Acyclic Edge Coloring of the Cartesian Product of Graphs

Let G be a graph and χaa(G) denotes the minimum number of colors required for an acyclic edge coloring of G in which no two adjacent vertices are incident to edges colored with the same set of colors. We prove a general bound for χaa(G□H) for any two graphs G and H. We also determine exact value of this parameter for the Cartesian product of two paths, Cartesian product of a path and a cycle, C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2008