A driving and coupling "Pac-Man" mechanism for chromosome poleward translocation in anaphase A.
نویسندگان
چکیده
During mitosis, chromatid harnesses its kinetochore translocation at the depolymerizing microtubule ends for its poleward movement in anaphase A. The force generation mechanism for such movement remains unknown. Analysis of the current experimental results shows that the bending energy release from the bound tubulin subunits alone cannot provide sufficient driving force. Additional contribution from effective electrostatic attractions between the kinetochore and the microtubule is needed for kinetochore translocation. Interestingly, as the kinetochore moves to inside the microtubule, the microtubule tip is free to bend outward so that the instantaneous distance between the kinetochore and the microtubule tip is much closer than the rest of the microtubule. This close contact yields much larger electrostatic attraction than that from the rest of the microtubule under physiological ionic conditions. As a result, the effective electrostatic interaction hinders the further kinetochore poleward translocation until the microtubule tip dissociates. Thus, the kinetochore translocation is strongly coupled at the depolymerizing microtubule end. This driving-coupling mechanism indicates that the kinetochore velocity is largely controlled by the microtubule dissociation rate, which explains the insensitivity of kinetochore velocity to its viscous drag and the large redundancy in its stalling force.
منابع مشابه
Pac-man motility of kinetochores unleashed by laser microsurgery
We report on experiments directly in living cells that reveal the regulation of kinetochore function by tension. X and Y sex chromosomes in crane fly (Nephrotoma suturalis) spermatocytes exhibit an atypical segregation mechanism in which each univalent maintains K-fibers to both poles. During anaphase, each maintains a leading fiber (which shortens) to one pole and a trailing fiber (which elong...
متن کاملDirect Visualization of Microtubule Flux during Metaphase and Anaphase in Crane-Fly Spermatocytes□V
Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward throug...
متن کاملPoleward Microtubule Flux Is a Major Component of Spindle Dynamics and Anaphase A in Mitotic Drosophila Embryos
During cell division, eukaryotic cells assemble dynamic microtubule-based spindles to segregate replicated chromosomes. Rapid spindle microtubule turnover, likely derived from dynamic instability, has been documented in yeasts, plants and vertebrates. Less studied is concerted spindle microtubule poleward translocation (flux) coupled to depolymerization at spindle poles. Microtubule flux has be...
متن کاملDirect visualization of microtubule flux during metaphase and anaphase in crane-fly spermatocytes.
Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward throug...
متن کاملAnaphase A Chromosome Movement and Poleward Spindle Microtubule Flux Occur At Similar Rates in Xenopus Extract Spindles
We have used local fluorescence photoactivation to mark the lattice of spindle microtubules during anaphase A in Xenopus extract spindles. We find that both poleward spindle microtubule flux and anaphase A chromosome movement occur at similar rates ( approximately 2 microm/min). This result suggests that poleward microtubule flux, coupled to microtubule depolymerization near the spindle poles, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 49 شماره
صفحات -
تاریخ انتشار 2006