Generalized Time-dependent Conditional Linear Models under Left Truncation and Right Censoring
نویسندگان
چکیده
Consider the model φ(S(z|X)) = β(z)t ~ X, where φ is a known link function, S(·|X) is the survival function of a response Y given a covariate X, ~ X = (1,X,X2, . . . ,Xp) and β(z) = (β0(z), . . . , βp(z)) t is an unknown vector of time-dependent regression coefficients. The response is subject to left truncation and right censoring. Under this model, which reduces for special choices of φ to e.g. Cox’s proportional hazards model or the additive hazards model with time dependent coefficients, we study the estimation of the vector β(z). A least squares approach is proposed and the asymptotic properties of the proposed estimator are established. The estimator is also compared with a competing maximum likelihood based estimator by means of simulations. Finally, the method is applied to a larynx cancer data set.
منابع مشابه
msSurv, an R Package for Nonparametric Estimation of Multistate Models
We present an R package, msSurv, to calculate the marginal (that is, not conditional on any covariates) state occupation probabilities, the state entry and exit time distributions, and the marginal integrated transition hazard for a general, possibly non-Markov, multistate system under left-truncation and right censoring. For a Markov model, msSurv also calculates and returns the transition pro...
متن کاملSemiparametric likelihood inference for left-truncated and right-censored data.
This paper proposes a new estimation procedure for the survival time distribution with left-truncated and right-censored data, where the distribution of the truncation time is known up to a finite-dimensional parameter vector. The paper expands on the Vardis multiplicative censoring model (Vardi, 1989. Multiplicative censoring, renewal processes, deconvolution and decreasing density: non-parame...
متن کاملLikelihood Inference for Left Truncated and Right Censored Lifetime Data
Left truncation and right censoring arise naturally in lifetime data. Left truncation arises because in many situations, failure of a unit is observed only if it fails after a certain period. Often, the units under study may not be followed until all of them fail and the experimenter may have to stop at a certain time when some of the units may still be working. This introduces right censoring ...
متن کاملStrong Convergence Rates of the Product-limit Estimator for Left Truncated and Right Censored Data under Association
Non-parametric estimation of a survival function from left truncated data subject to right censoring has been extensively studied in the literature. It is commonly assumed in such studies that the lifetime variables are a sample of independent and identically distributed random variables from the target population. This assumption is often prone to failure in practical studies. For instance, wh...
متن کاملBivariate Competing Risks Models Under Random Left Truncation and Right Censoring
In survival or reliability studies, it is common to have truncated data due to the limited time span of the study or dropouts of the subjects for various reasons. The estimation of survivor function under left truncation was first discussed by Kaplan and Meier by extending the well known productlimit estimator of the survivor function. The focus of this paper is on the nonparametric estimation ...
متن کامل