Error Estimates for Dominici’s Hermite Function Asymptotic Formula and Some Applications
نویسندگان
چکیده
The aim of this paper is to find a concrete bound for the error involved when approximating the nth Hermite function (in the oscillating range) by an asymptotic formula due to D. Dominici. This bound is then used to study the accuracy of certain approximations to Hermite expansions and to Fourier transforms. A way of estimating an unknown probability density is proposed. 2000 Mathematics subject classification: primary 33C45; secondary 41A10, 62G07.
منابع مشابه
Some extended Simpson-type inequalities and applications
In this paper, we shall establish some extended Simpson-type inequalities for differentiable convex functions and differentiable concave functions which are connected with Hermite-Hadamard inequality. Some error estimates for the midpoint, trapezoidal and Simpson formula are also given.
متن کاملOn generalized Hermite-Hadamard inequality for generalized convex function
In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.
متن کاملHermite-hadamard Type Inequalities for the Product Two Differentiable Mappings
In this paper we extend some estimates of the right hand side of a Hermite-Hadamard type inequality for the product two differentiable functions whose derivatives absolute values are convex. Some natural applications to special weighted means of real numbers are given. Finally, an error estimate for the Simpson’s formula is also addressed.
متن کاملAn inequality related to $eta$-convex functions (II)
Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کامل