Doob , Ignatov and Optional Skipping

نویسندگان

  • GORDON SIMONS
  • YI-CHING YAO
  • LIJIAN YANG
  • L. YANG
چکیده

A general set of distribution-free conditions is described under which an i.i.d. sequence of random variables is preserved under optional skipping. 1. Introduction and motivation. This paper discusses a general set of conditions under which an i.i.d. sequence of random variables ξ 1 , ξ 2 ,. .. , taking values in a measurable space (X, B), with common distribution F , is preserved under " optional skipping, " that is, a general set of conditions on a sequence of stopping times τ

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Time Stochastic Processes

4 Martingales 35 4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 Doob Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Optional Sampling Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Inequalities and Convergence . . . . . . . . . . . ...

متن کامل

Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets

t Vt = Vo + f H, dX~ Ct, t > O , o where H is an integrand for X, and C is an adapted increasing process. We call such a representation optional because, in contrast to the Doob-Meye r decomposition, it generally exists only with an adapted (optional) process C. We apply this decomposition to the problem of hedging European and American style contingent claims in the setting of incomplete secur...

متن کامل

On Quadratic g-Evaluations/Expectations and Related Analysis

In this paper we extend the notion of g-evaluation, in particular g-expectation, of Peng [10, 11] to the case where the generator g is allowed to have a quadratic growth. We show that some important properties of the g-expectations, including a representation theorem between the generator and the corresponding g-expectation, and consequently the reverse comparison theorem of quadratic BSDEs as ...

متن کامل

OBITUARY : Joseph Leonard

Joseph Leonard Doob was born in Cincinnati, Ohio, USA on 27 February 1910. In an interview Joe gave for Statistical Science (see Snell (1997)), he said that in grammar school he built a crystal set and in high school operated a radio transmitter. This led him to think he would major in mathematical physics when he entered Harvard in 1926. However, after taking two physics courses, Doob decided ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002