Fast Flexible Transistors with a Nanotrench Structure.
نویسندگان
چکیده
The simplification of fabrication processes that can define very fine patterns for large-area flexible radio-frequency (RF) applications is very desirable because it is generally very challenging to realize submicron scale patterns on flexible substrates. Conventional nanoscale patterning methods, such as e-beam lithography, cannot be easily applied to such applications. On the other hand, recent advances in nanoimprinting lithography (NIL) may enable the fabrication of large-area nanoelectronics, especially flexible RF electronics with finely defined patterns, thereby significantly broadening RF applications. Here we report a generic strategy for fabricating high-performance flexible Si nanomembrane (NM)-based RF thin-film transistors (TFTs), capable of over 100 GHz operation in theory, with NIL patterned deep-submicron-scale channel lengths. A unique 3-dimensional etched-trench-channel configuration was used to allow for TFT fabrication compatible with flexible substrates. Optimal device parameters were obtained through device simulation to understand the underlying device physics and to enhance device controllability. Experimentally, a record-breaking 38 GHz maximum oscillation frequency fmax value has been successfully demonstrated from TFTs with a 2 μm gate length built with flexible Si NM on plastic substrates.
منابع مشابه
Nonlinear Analysis of a Flexible Beam Actuated by a Couple of Active SMA Wire Actuators
There are two different ways of using SMA wires as actuators for shape control of flexible structures; which can be either embedded within the composite laminate or externally attached to the structure. Since the actuator can be placed at different offset distances from the beam, external actuators produce more bending moment and, consequently, considerable shape changes with the same magnitude...
متن کاملA Novel Low Voltage, Low Power and High Gain Operational Amplifier Using Negative Resistance and Self Cascode Transistors
In this work a low power, low voltage and high gain operational amplifier is proposed. For this purpose a negative resistance structure is used in parallel with output to improve the achievable gain. Because of using self cascode transistors in the output, the proposed structure remains approximately constant in a relatively large output voltage swing causing an invariable gain. To evaluate the...
متن کاملA review of carbon nanotube- and graphene-based flexible thin-film transistors.
Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performanc...
متن کاملA Fast and Self-Repairing Genetic Programming Designer for Logic Circuits
Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of con...
متن کاملControlling the dimensionality of charge transport in organic thin-film transistors.
Electrolyte-gated organic thin-film transistors (OTFTs) can offer a feasible platform for future flexible, large-area and low-cost electronic applications. These transistors can be divided into two groups on the basis of their operation mechanism: (i) field-effect transistors that switch fast but carry much less current than (ii) the electrochemical transistors which, on the contrary, switch sl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016