Extrinsic Differential Geometry
ثبت نشده
چکیده
منابع مشابه
The Differential Geometric View of Statistics and Estimation
Statistics and estimation theory is enriched with techniques derived from differential geometry. This establishes the increasing topic of information geometry. This allows new insights into these classical topics. Differential geometry offers a wide spectrum of applications within statistic inference and estimation theory. Especially, many topics of information theory can be interpreted in a ge...
متن کاملA Dirac Operator for Extrinsic Shape Analysis
The eigenfunctions and eigenvalues of the Laplace-Beltrami operator have proven to be a powerful tool for digital geometry processing, providing a description of geometry that is essentially independent of coordinates or the choice of discretization. However, since Laplace-Beltrami is purely intrinsic it struggles to capture important phenomena such as extrinsic bending, sharp edges, and fine s...
متن کاملExtrinsic sphere and totally umbilical submanifolds in Finsler spaces
Based on a definition for circle in Finsler space, recently proposed by one of the present authors and Z. Shen, a natural definition of extrinsic sphere in Finsler geometry is given and it is shown that a connected submanifold of a Finsler manifold is totally umbilical and has non-zero parallel mean curvature vector field, if and only if its circles coincide with circles of the ambient...
متن کاملThe Shape of Differential Geometry in Geometric Calculus
We review the foundations for coordinate-free differential geometry in Geometric Calculus. In particular, we see how both extrinsic and intrinsic geometry of a manifold can be characterized a single bivector-valued oneform called the Shape Operator. The challenge is to adapt this formalism to Conformal Geometric Algebra for wide application in computer science and engineering.
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کامل