Tree Revision Learning for Dependency Parsing
نویسندگان
چکیده
We present a revision learning model for improving the accuracy of a dependency parser. The revision stage corrects the output of the base parser by means of revision rules learned from the mistakes of the base parser itself. Revision learning is performed with a discriminative classifier. The revision stage has linear complexity and preserves the efficiency of the base parser. We present empirical evaluations on the treebanks of two languages, which show effectiveness in relative error reduction and state of the art accuracy.
منابع مشابه
Dependency Parsing
A dependency parser analyzes syntactic structure by identifying dependency relations between words. In this lecture, I will introduce dependency-based syntactic representations (§1), arcfactored models for dependency parsing (§2), and online learning algorithms for such models (§3). I will then discuss two important parsing algorithms for these models: Eisner’s algorithm for projective dependen...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملOnline Learning of Approximate Dependency Parsing Algorithms
In this paper we extend the maximum spanning tree (MST) dependency parsing framework of McDonald et al. (2005c) to incorporate higher-order feature representations and allow dependency structures with multiple parents per word. We show that those extensions can make the MST framework computationally intractable, but that the intractability can be circumvented with new approximate parsing algori...
متن کاملCMILLS: Adapting Semantic Role Labeling Features to Dependency Parsing
We describe a system for semantic role labeling adapted to a dependency parsing framework. Verb arguments are predicted over nodes in a dependency parse tree instead of nodes in a phrase-structure parse tree. Our system participated in SemEval-2015 shared Task 15, Subtask 1: CPA parsing and achieved an Fscore of 0.516. We adapted features from prior semantic role labeling work to the dependency...
متن کاملTwo Approaches for Building an Unsupervised Dependency Parser and Their Other Applications
Much work has been done on building a parser for natural languages, but most of this work has concentrated on supervised parsing. Unsupervised parsing is a less explored area, and unsupervised dependency parser has hardly been tried. In this paper we present two approaches for building an unsupervised dependency parser. One approach is based on learning dependency relations and the other on lea...
متن کامل