Functional relationships between agonist binding sites and coupling regions of homomeric Cys-loop receptors.

نویسندگان

  • Natalia Andersen
  • Jeremías Corradi
  • Mariana Bartos
  • Steven M Sine
  • Cecilia Bouzat
چکیده

Each subunit in a homopentameric Cys-loop receptor contains a specialized coupling region positioned between the agonist binding domain and the ion conductive channel. To determine the contribution of each coupling region to the stability of the open channel, we constructed a receptor subunit (α7-5-HT(3A)) with both a disabled coupling region and a reporter mutation that alters unitary conductance, and coexpressed normal and mutant subunits. The resulting receptors show single-channel current amplitudes that are quantized according to the number of reporter mutations per receptor, allowing correlation of the number of intact coupling regions with mean open time. We find that each coupling region contributes an equal increment to the stability of the open channel. However, by altering the numbers and locations of active coupling regions and binding sites, we find that a coupling region in a subunit flanked by inactive binding sites can still stabilize the open channel. We also determine minimal requirements for channel opening regardless of stability and find that channel opening can occur in a receptor with one active coupling region flanked by functional binding sites or with one active binding site flanked by functional coupling regions. The overall findings show that, whereas the agonist binding sites contribute interdependently and asymmetrically to open-channel stability, the coupling regions contribute independently and symmetrically.

منابع مشابه

Number and locations of agonist binding sites required to activate homomeric Cys-loop receptors.

Homo-pentameric Cys-loop receptors contain five identical agonist binding sites, each formed at a subunit interface. To determine the number and locations of binding sites required to generate a stable active state, we constructed a receptor subunit with a mutation that disables the agonist binding site and a reporter mutation that alters unitary conductance and coexpressed mutant and nonmutant...

متن کامل

Principles of agonist recognition in Cys-loop receptors

Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine, and GABA. After the term "chemoreceptor" emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies, and X-ray crystallography experiments identified the extracellular interface ...

متن کامل

The interface between extracellular and transmembrane domains of homomeric Cys-loop receptors governs open-channel lifetime and rate of desensitization.

The lifetimes of activated postsynaptic receptor channels contribute to the efficiency of synaptic transmission. Here we show that structural differences within the interface dividing extracellular and transmembrane domains of homomeric alpha7 and 5-HT(3A) receptors account for the large differences in open-channel lifetime and time of desensitization onset between these contrasting members of ...

متن کامل

Cysteine modification reveals which subunits form the ligand binding site in human heteromeric 5-HT3AB receptors

The ligand binding site of Cys-loop receptors is formed by residues on the principal (+) and complementary (-) faces of adjacent subunits, but the subunits that constitute the binding pocket in many heteromeric receptors are not yet clear. To probe the subunits involved in ligand binding in heteromeric human 5-HT(3)AB receptors, we made cysteine substitutions to the + and - faces of A and B sub...

متن کامل

Nicotinic Receptor Interloop Proline Anchors β1-β2 and Cys loops in Coupling Agonist Binding to Channel Gating

Nicotinic acetylcholine receptors (AChRs) mediate rapid excitatory synaptic transmission throughout the peripheral and central nervous systems. They transduce binding of nerve-released ACh into opening of an intrinsic channel, yet the structural basis underlying transduction is not fully understood. Previous studies revealed a principal transduction pathway in which alphaArg 209 of the pre-M1 d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 10  شماره 

صفحات  -

تاریخ انتشار 2011