Salt Modulates Oligomerization Properties of hRad51 and hRad52 Proteins

نویسندگان

  • Kamakshi Balakrishnan
  • Neeraja M. Krishnan
  • Basuthkar J. Rao
چکیده

Human Rad52 (hRad52) and Rad51 (hRad51) proteins are important components of homologous recombination machinery involved in DNA double strand break repair. hRad52 subunits oligomerize to form rings, which are further believed to stack one over another giving rise to higher order structures. Such structures bind the ends of duplex DNA to bring about DNA end joining. hRad51 exists in the native state as oligomeric rings and monomerizes to interact with the DNA. In our current study, we report disruption and solubilization of hRad52 aggregates and higher order aggregation of hRad51 molecules at high salt (KCl) concentration. Computational analysis of the crystal structure available for N-terminal 212 amino acids of hRad52 protein reveal a dense unique distribution of salt bridges, not only between adjacent but also between penultimate subunit neighbors which perhaps contribute to stabilization of hRad52 oligomeric rings. Our results suggest that disruption of inter-subunit salt bridges and thereby perturbation of interaction between individual monomers as the underlying mechanism for salt mediated monomerization of hRad52 protein. The crystal structure of Rad51 on the other hand lacks such dense salt-bridge connectivity suggesting that salt-mediated monomerization is a feature of proteins with dense salt-bridge networks. Salt brings together the hydrophobic surface residues of hRad51 in a process termed as “salting out” resulting in aggregation of hRad51 molecules. Given the functional relevance of oligomeric hRad52 and monomeric hRad51 in homologous recombination mediated repair, our findings imply that salt regulates the oligomerization status of these repair proteins, and thereby, their functions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of C-Terminal Region of Yeast and Human Rad52 in Rad51-Nucleoprotein Filament Formation and ssDNA Annealing

Yeast Rad52 (yRad52) has two important functions at homologous DNA recombination (HR); annealing complementary single-strand DNA (ssDNA) molecules and recruiting Rad51 recombinase onto ssDNA (recombination mediator activity). Its human homolog (hRAD52) has a lesser role in HR, and apparently lacks mediator activity. Here we show that yRad52 can load human Rad51 (hRAD51) onto ssDNA complexed wit...

متن کامل

Short communication:Effect of salt and alkaline on the physicochemical properties of the protein isolates extracted from lanternfish (Benthosema pterotum)

Food proteins have long been recognized for their nutritional and functional properties. The nutritional properties of proteins are associated with their amino acid content. On the other hand, the functional properties of proteins relate to their contribution to the physiochemical and sensory properties of foods (Sila and Bougatef, 2016). Marine organisms contain proteins with high quantities o...

متن کامل

Interaction of p53 with the human Rad51 protein.

p53 is thought to function in the maintenance of genomic stability by modulating transcription and interacting with cellular proteins to influence the cell cycle, DNA repair and apoptosis. p53 mutations occur in >50% of human cancers, and cells which lack wild type p53 accumulate karyotypic abnormalities such as amplifications, deletions, inversions and translocations. We propose that p53 hinde...

متن کامل

p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination.

p53 inhibits tumorigenesis through a variety of functions, including mediation of cell cycle arrest, premature senescence, and apoptosis.p53 also can associate with several DNA helicases and proteins involved in homologous recombination. In this study, we show that p53, hRAD51, and hRAD54 coimmunoprecipitated and colocalized with each other at endogenous levels in normal cells. Colocalization w...

متن کامل

Dual and Opposite Effects of hRAD51 Chemical Modulation on HIV-1 Integration.

The cellular DNA repair hRAD51 protein has been shown to restrict HIV-1 integration both in vitro and in vivo. To investigate its regulatory functions, we performed a pharmacological analysis of the retroviral integration modulation by hRAD51. We found that, in vitro, chemical activation of hRAD51 stimulates its integration inhibitory properties, whereas inhibition of hRAD51 decreases the integ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009