Assessment of hydrophobicity scales for protein stability and folding using energy and RMSD criteria

نویسندگان

  • Boris Haimov
  • Simcha Srebnik
چکیده

De novo prediction of protein folding is an open scientific challenge. Many folding models and force fields have been developed, yet all face difficulties converging to native conformations. Hydrophobicity scales (HSs) play a crucial role in such simulations as they define the energetic interactions between protein residues, thus determining the energetically favorable conformation. While many HSs have been developed over the years using various methods, it is surprising that the scales show very weak consensus in their assignment of hydrophobicity indexes to the various residues. In this work, several HSs are systematically assessed via atomistic Monte Carlo simulation of folding of small proteins, by converting the HSs of interest into residue-residue contact energy matrices. HSs that poorly preserve native structures of proteins were tuned by applying a linear transformation. Subsequently, folding simulations were used to examine the ability of the HSs to correctly fold the proteins from a random initial conformation. Root mean square deviation (RMSD) and energy of the proteins during folding were sampled and used to define an ER-score, as the correlation between the 2-dimensional energy-RMSD (ER) histogram with 50% lowest energy conformations and the ER histogram with 50% lowest RMSD conformations. Thus, we were able to compare the ability of the different HSs to predict de novo protein folding quantitatively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Study at Different Temperatures for Active Site of Azurin in Water, Ethanol, Methanol and Gas Phase by Monte Carlo Simulations

The interaction between the solute and the solsent molecules play a crucial role in understanding the various molecular processes involved in chemistry and biochemistry, so in this work the potential energy of active site of azurin have been calculated in solvent by the Monte Carlo simulation. In this paper we present quantitative results of Monte Carlo calculations of potential energies of ...

متن کامل

Protein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions

Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...

متن کامل

Computational impact of hydrophobicity in protein stability

Among the various features of amino acids, the hydrophobic property has most visible impact on stability of a sequence folding. This is mentioned in many protein folding related work, in this paper we more elaborately discuss the computational impact of the well defined ‘hydrophobic aspect in determining stability’, approach with the help of a developed ‘free energy computing algorithm’ coverin...

متن کامل

Osmolyte-Induced Folding and Stability of Proteins: Concepts and Characterization

It is well-known that the typical protein’s three-dimensional structure is relatively unstable in harsh conditions. A practical approach to maintain the folded state and thus improve the stability and activity of proteins in unusual circumstances is to directly apply stabilizing substances such as osmolytes to the protein-containing solutions. Osmolytes as natural occurring organic molecules ty...

متن کامل

Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations

We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017